A039678 Smallest number m > 1 such that m^(p-1)-1 is divisible by p^2, where p = n-th prime.
5, 8, 7, 18, 3, 19, 38, 28, 28, 14, 115, 18, 51, 19, 53, 338, 53, 264, 143, 11, 306, 31, 99, 184, 53, 181, 43, 164, 96, 68, 38, 58, 19, 328, 313, 78, 226, 65, 253, 259, 532, 78, 176, 276, 143, 174, 165, 69, 330, 44, 33, 332, 94, 263, 48, 79, 171, 747, 731, 20, 147, 91, 40
Offset: 1
Examples
For n=3, p=5 is the third prime and 5^2 = 25 divides 7^4 - 1 = 2400.
References
- P. Ribenboim, The New Book of Prime Number Records, Springer, 1996, 345-349.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A185103.
Programs
-
Mathematica
dpa[n_]:=Module[{p=Prime[n],a=2},While[PowerMod[a,p-1,p^2]!=1,a++];a]; Array[dpa,70] (* Harvey P. Dale, Sep 05 2012 *)
-
PARI
a(n) = my(p=prime(n)); for(a=2, oo, if(Mod(a, p^2)^(p-1)==1, return(a))) \\ Felix Fröhlich, Nov 24 2018
-
Python
from sympy import prime from sympy.ntheory.residue_ntheory import nthroot_mod def A039678(n): return 2**2+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**2,True)[1]) # Chai Wah Wu, May 18 2022
Extensions
More terms from David W. Wilson
Definition adjusted by Felix Fröhlich, Jun 24 2014
Edited by Felix Fröhlich, Nov 24 2018
Comments