cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039951 a(n) is the smallest prime p such that p^2 divides n^(p-1) - 1.

Original entry on oeis.org

2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n^k) <= a(n) for any n,k > 1.
a(n) is currently unknown for n in {47, 72, 186, 187, 200, 203, 222, 231, 304, 311, 335, 355, 435, 454, 546, 554, 610, 639, 662, 760, 772, 798, 808, 812, 858, 860, 871, 983, 986, ...}. - Richard Fischer, Jul 15 2021
a(47) > 1.4*10^14, a(72) > 1.4*10^14 (see Fischer's tables).
For all nonnegative integers n and k, a(n^(n^k)) = a(n) (see Puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {8, 10, 19, 26, 28, 35}. - Farideh Firoozbakht and Jahangeer Kholdi, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    Table[p = 2; While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p, {n, 33}] (* Michael De Vlieger, Nov 24 2016 *)
    f[n_] := Block[{p = 2}, While[ PowerMod[n, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 33] (* Robert G. Wilson v, Jul 18 2018 *)
  • PARI
    a(n)={forprime(p=2, oo, if(Mod(n, p^2)^(p-1)==1, return(p))); oo} \\ Felix Fröhlich, Jul 24 2014

Formula

a(4k+1) = 2.
a(n) = A096082(n) for all n > 1 that are not of the form 4k+1. Note that A096082 begins with n = 2. [Corrected and clarified by Jonathan Sondow, Jun 17-18 2010]

Extensions

a(34)-a(46) from Helmut Richter (richter(AT)lrz.de), May 17 2004
Entry revised by N. J. A. Sloane, Nov 30 2006
Edited by Max Alekseyev, Oct 06, Oct 09 2009
Edited and updated by Max Alekseyev, Jan 29 2012