cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039955 Squarefree numbers congruent to 1 (mod 4).

Original entry on oeis.org

1, 5, 13, 17, 21, 29, 33, 37, 41, 53, 57, 61, 65, 69, 73, 77, 85, 89, 93, 97, 101, 105, 109, 113, 129, 133, 137, 141, 145, 149, 157, 161, 165, 173, 177, 181, 185, 193, 197, 201, 205, 209, 213, 217, 221, 229, 233, 237, 241, 249, 253, 257, 265, 269
Offset: 1

Views

Author

Keywords

Comments

The subsequence of primes is A002144.
The subsequence of semiprimes (intersection with A001358) begins: 21, 33, 57, 65, 69, 77, 85, 93, 129, 133, 141, 145, 161, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265.
The subsequence with more than two prime factors (intersection with A033942) begins: 105 = 3 * 5 * 7, 165 = 3 * 5 * 11, 273, 285, 345, 357, 385, 429, 465. - Jonathan Vos Post, Feb 19 2011
Except for a(1) = 1 these are the squarefree members of A079896 (i.e., squarefree determinants D of indefinite binary quadratic forms). - Wolfdieter Lang, Jun 01 2013
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Haskell
    a039955 n = a039955_list !! (n-1)
    a039955_list = filter ((== 1) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+1: n in [0..67] | IsSquarefree(4*n+1)];  // Bruno Berselli, Mar 03 2011
    
  • Mathematica
    fQ[n_] := Max[Last /@ FactorInteger@ n] == 1 && Mod[n, 4] == 1; Select[ Range@ 272, fQ] (* Robert G. Wilson v *)
    Select[Range[1,300,4],SquareFreeQ[#]&] (* Harvey P. Dale, Mar 27 2020 *)
  • PARI
    list(lim)=my(v=List([1])); forfactored(n=5,lim\1, if(vecmax(n[2][,2])==1 && n[1]%4==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
    
  • PARI
    is(n)=n%4==1 && issquarefree(n) \\ Charles R Greathouse IV, Nov 05 2017