A039955 Squarefree numbers congruent to 1 (mod 4).
1, 5, 13, 17, 21, 29, 33, 37, 41, 53, 57, 61, 65, 69, 73, 77, 85, 89, 93, 97, 101, 105, 109, 113, 129, 133, 137, 141, 145, 149, 157, 161, 165, 173, 177, 181, 185, 193, 197, 201, 205, 209, 213, 217, 221, 229, 233, 237, 241, 249, 253, 257, 265, 269
Offset: 1
References
- Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- A. M. Legendre, Diviseurs de la formule t^2+a*u^2, a étant de la forme 4 n + 1, Essai sur la Théorie des Nombres An VI, Table IV. See first column. [_Paul Curtz_, Aug 14 2019]
Programs
-
Haskell
a039955 n = a039955_list !! (n-1) a039955_list = filter ((== 1) . (`mod` 4)) a005117_list -- Reinhard Zumkeller, Aug 15 2011
-
Magma
[4*n+1: n in [0..67] | IsSquarefree(4*n+1)]; // Bruno Berselli, Mar 03 2011
-
Mathematica
fQ[n_] := Max[Last /@ FactorInteger@ n] == 1 && Mod[n, 4] == 1; Select[ Range@ 272, fQ] (* Robert G. Wilson v *) Select[Range[1,300,4],SquareFreeQ[#]&] (* Harvey P. Dale, Mar 27 2020 *)
-
PARI
list(lim)=my(v=List([1])); forfactored(n=5,lim\1, if(vecmax(n[2][,2])==1 && n[1]%4==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
-
PARI
is(n)=n%4==1 && issquarefree(n) \\ Charles R Greathouse IV, Nov 05 2017
Comments