A074183 Duplicate of A039960.
1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 18, 18, 19, 20
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(6)=4 since 6!=720, which in base 6 is 3200.
[1] cat [1 + Floor(Log(Factorial(n))/Log(n)): n in [2..80]]; // Vincenzo Librandi, Apr 15 2015
Join[{1},Table[IntegerLength[n!,n],{n,2,80}]] (* Harvey P. Dale, May 30 2014 *)
a(n)=if(n>1, logint(n!,n), 1) \\ Charles R Greathouse IV, Oct 29 2016
a(n)=if(n>1, lngamma(n+1)\log(n))+1 \\ Charles R Greathouse IV, Oct 29 2016
[1] + [1 + floor(log(factorial(n))/log(n)) for n in range(2,74)] # Danny Rorabaugh, Apr 14 2015
[1] cat [Ceiling(Log(Factorial(n))/Log(n)): n in [2..80]]; // Vincenzo Librandi, Apr 15 2015
a(n)=if(n>2,lngamma(n+1)\log(n))+1 \\ Charles R Greathouse IV, Sep 02 2015
[1]+[ceil(log(factorial(n))/log(n)) for n in range(2, 74)] # Danny Rorabaugh, Apr 14 2015
Join[{1},Table[n^Ceiling[Log[n,n!]],{n,2,20}]] (* Harvey P. Dale, Aug 10 2022 *)
a(n)=if(n>2,n^(logint(n!,n)+1),n) \\ Charles R Greathouse IV, Oct 11 2015
[1]+[n^ceil(log(factorial(n))/log(n)) for n in range(2,20)] # Danny Rorabaugh, Apr 14 2015
[1] cat [n^Floor(Log(Factorial(n)) / Log(n)): n in [2..25]]; // Vincenzo Librandi, Apr 15 2015
a(n)=if(n>3,n^logint(n!,n),n) \\ Charles R Greathouse IV, Oct 11 2015
[1] + [n^(floor(log(factorial(n))/log(n))) for n in range(2, 21)] # Danny Rorabaugh, Apr 14 2015
With n=1: 1! < 2! gives a(1)=1, a(2)=2. With n=2: 2! < 3^1 < 2^2 < 3! gives a(3)=3, a(4)=4, a(5)=6. With n=3: 3! < 3^2 < 4^2 < 4! gives a(6)=9, a(7)=16, a(8)=24. With n=4: 4! < 5^2 < 4^3 < 5! gives a(9)=25, a(10)=64, a(11)=120. With n=5: 5! < 5^3 < 6^3 < 5^4 < 6! gives a(12)=125, a(13)=216, a(14)=625, a(15)=720
f[n_] := Block[{a = n!, b = (n + 1)!}, Sort@ Union[{a}, n^Range[Ceiling@ Log[n, a], Floor@ Log[n, b]], (n + 1)^Range[Ceiling@ Log[n + 1, a], Floor@ Log[n + 1, b]]]]; {1}~Join~(f /@ Range[2, 14] // Flatten) (* Michael De Vlieger, Apr 15 2015 *)
tabf(nn) = {print([1]); for (n=2, nn, v = [n!]; ka = ceil(log(n!+1)/log(n)); kb = floor(log((n+1)!-1)/log(n)); for (k=ka, kb, v = concat(v, n^k);); ka = ceil(log(n!+1)/log(n+1)); kb = floor(log((n+1)!-1)/log(n+1)); for (k=ka, kb, v = concat(v, (n+1)^k);); print(vecsort(v));); } \\ Michel Marcus, Apr 22 2015
Comments