cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040003 Continued fraction for sqrt(6).

Original entry on oeis.org

2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0

Views

Author

Keywords

Examples

			2.449489742783178098197284074... = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 143.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010464 (decimal expansion).
Equals twice A040001.
Essentially the same as A010694.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[6], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(6)); for (n=0, 20000, write("b040003.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(n-1) = gcd(2^n, 3^n+1) (empirical). - Michel Marcus, Sep 03 2020
G.f.: 2*(1 + x + x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025