A040003 Continued fraction for sqrt(6).
2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0
Examples
2.449489742783178098197284074... = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 143.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Programs
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[6], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(6)); for (n=0, 20000, write("b040003.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009
Formula
a(n-1) = gcd(2^n, 3^n+1) (empirical). - Michel Marcus, Sep 03 2020
G.f.: 2*(1 + x + x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025