A040019 Continued fraction for sqrt(24).
4, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8
Offset: 0
Examples
4.898979485566356196394568149... = 4 + 1/(1 + 1/(8 + 1/(1 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Programs
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[24],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *) PadRight[{4},120,{8,1}] (* Harvey P. Dale, Oct 24 2022 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(24)); for (n=0, 20000, write("b040019.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009
Formula
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 8, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 7/2^s). (End)
G.f.: (4 + x + 4*x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025
Comments