A040037 Continued fraction for sqrt(44).
6, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1
Offset: 0
Examples
6.633249580710799698229865473... = 6 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 05 2009
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Crossrefs
Cf. A010498 (decimal expansion).
Programs
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[44],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *) PadRight[{6},80,{12,1,1,1,2,1,1,1}] (* Harvey P. Dale, Apr 02 2013 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 14000); x=contfrac(sqrt(44)); for (n=0, 20000, write("b040037.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009
Formula
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 1, a(4) = 2, a(2^e) = 12 for e >= 3, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 5/2^(3*s-1) + 1/4^s). (End)
G.f.: (6 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 6*x^8)/(1 - x^8). - Stefano Spezia, Jul 27 2025