cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041833 Denominators of continued fraction convergents to sqrt(437).

Original entry on oeis.org

1, 1, 10, 21, 199, 220, 8999, 9219, 91970, 193159, 1830401, 2023560, 82772801, 84796361, 845940050, 1776676461, 16836028199, 18612704660, 761344214599, 779956919259, 7780956487930, 16341869895119, 154857785544001, 171199655439120, 7002844003108801
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,10,21,199,220,8999,9219,91970,193159, 1830401,2023560]; [n le 12 select I[n] else 9198*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 25 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[437], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[437], 30]] (* Vincenzo Librandi, Dec 25 2013 *)

Formula

G.f.: -(x^10 -x^9 +10*x^8 -21*x^7 +199*x^6 -220*x^5 -199*x^4 -21*x^3 -10*x^2 -x -1) / ((x^4 -21*x^2 +1)*(x^8 +21*x^6 +440*x^4 +21*x^2 +1)). - Colin Barker, Nov 25 2013
a(n) = 9198*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 25 2013

A041832 Numerators of continued fraction convergents to sqrt(437).

Original entry on oeis.org

20, 21, 209, 439, 4160, 4599, 188120, 192719, 1922591, 4037901, 38263700, 42301601, 1730327740, 1772629341, 17683991809, 37140612959, 351949508440, 389090121399, 15915554364400, 16304644485799, 162657354736591, 341619353958981, 3237231540367420
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[437], 30]] (* Vincenzo Librandi, Nov 09 2013 *)
    LinearRecurrence[{0,0,0,0,0,9198,0,0,0,0,0,-1},{20,21,209,439,4160,4599,188120,192719,1922591,4037901,38263700,42301601},30] (* Harvey P. Dale, Jul 09 2024 *)

Formula

G.f.: -(x^11 -20*x^10 +21*x^9 -209*x^8 +439*x^7 -4160*x^6 -4599*x^5 -4160*x^4 -439*x^3 -209*x^2 -21*x -20) / ((x^4 -21*x^2 +1)*(x^8 +21*x^6 +440*x^4 +21*x^2 +1)). - Colin Barker, Nov 25 2013
a(n) = 9198*a(n-6)-a(n-12). - Wesley Ivan Hurt, May 04 2021

Extensions

More terms from Colin Barker, Nov 25 2013
Showing 1-2 of 2 results.