cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041042 Numerators of continued fraction convergents to sqrt(27).

Original entry on oeis.org

5, 26, 265, 1351, 13775, 70226, 716035, 3650401, 37220045, 189750626, 1934726305, 9863382151, 100568547815, 512706121226, 5227629760075, 26650854921601, 271736178976085, 1385331749802026, 14125053676996345
Offset: 0

Views

Author

Keywords

Comments

Subset of |A002316| (conjectured).

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[27],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
    Numerator/@Convergents[Sqrt[27],20] (* Harvey P. Dale, Jul 21 2011 *)
    CoefficientList[Series[(- x^3 + 5 x^2 + 26 x + 5)/(x^4 - 52 x^2 + 1), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := (-5-3*Sqrt[3]+(-5+3*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(2*(26+15*Sqrt[3])^n) // Simplify
    a1[n_] := (1+(26+15*Sqrt[3])^(2*n))/(2*(26+15*Sqrt[3])^n) //  Simplify
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)
    LinearRecurrence[{0,52,0,-1},{5,26,265,1351},30] (* Harvey P. Dale, Dec 12 2015 *)

Formula

G.f.: (-x^3+5x^2+26x+5)/(x^4-52x^2+1).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((-5-3*sqrt(3))/(26+15*sqrt(3))^n+(-5+3*sqrt(3))*(26+15*sqrt(3))^n)/2.
a1(n) = (1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/2. (End)