cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041043 Denominators of continued fraction convergents to sqrt(27).

Original entry on oeis.org

1, 5, 51, 260, 2651, 13515, 137801, 702520, 7163001, 36517525, 372338251, 1898208780, 19354426051, 98670339035, 1006057816401, 5128959421040, 52295652026801, 266607219555045, 2718367847577251, 13858446457441300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[27],50]] (* Harvey P. Dale, Apr 22 2012 *)
    CoefficientList[Series[- (x^2 - 5 x - 1)/(x^4 - 52 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    a0[n_] := (9+5*Sqrt[3]+(9-5*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(18*(26+15*Sqrt[3])^n) // Simplify
    a1[n_] := (-1+(26+15*Sqrt[3])^(2*n))/(6*Sqrt[3]*(26+15*Sqrt[3])^n) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)

Formula

a(n) = 52*a(n-2)-a(n-4). G.f.: -(x^2-5*x-1)/(x^4-52*x^2+1). - Colin Barker, Jul 15 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((9+5*sqrt(3))/(26+15*sqrt(3))^n+(9-5*sqrt(3))*(26+15*sqrt(3))^n)/18.
a1(n) = (-1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/(6*sqrt(3)). (End)

A175180 Numbers k such that k^2 + 2 is powerful in the sense of A001694.

Original entry on oeis.org

5, 265, 13775, 716035, 9980583, 37220045, 1934726305
Offset: 1

Views

Author

Michel Lagneau, Mar 01 2010

Keywords

Comments

This sequence is infinite (F. Luca in De Koninck).
The values of k^2 are a subset of A076445, so 23 terms of the sequence are known from there. - R. J. Mathar, Mar 05 2010
Together with 1, supersequence of A238799. - Arkadiusz Wesolowski, Mar 06 2014
From Amiram Eldar, Feb 23 2024: (Start)
a(8) <= 100568547815.
A041042(2*k) is a term for all k >= 0 (since 3^3 * A041043(n)^2 - A041042(n)^2 = -1 if n is odd and 2 if n is even). (End)

Examples

			5 is in the sequence because 5^2 + 2 = 3^3 is powerful.
265 is in the sequence because 265^2 + 2 = 51^2*3^3 is powerful.
13775 is in the sequence because 13775^2 + 2 = 2651^2 * 3^3 is powerful.
		

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 265, p. 71, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n^2+2][[;;, 2]], # > 1 &]; Select[Range[10^6], q] (* Amiram Eldar, Feb 23 2024 *)
  • PARI
    is(n)=ispowerful(n^2+2) \\ Charles R Greathouse IV, Feb 04 2013

Extensions

Examples rephrased by R. J. Mathar, Feb 24 2010, Mar 05 2010
a(7) from Amiram Eldar, Feb 23 2024
Showing 1-2 of 2 results.