cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041053 Denominators of continued fraction convergents to sqrt(32).

Original entry on oeis.org

1, 1, 2, 3, 32, 35, 67, 102, 1087, 1189, 2276, 3465, 36926, 40391, 77317, 117708, 1254397, 1372105, 2626502, 3998607, 42612572, 46611179, 89223751, 135834930, 1447573051, 1583407981, 3030981032, 4614389013
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[32],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
    Denominator[Convergents[Sqrt[32],30]] (* or *) LinearRecurrence[{0,0,0,34,0,0,0,-1},{1,1,2,3,32,35,67,102},30] (* Harvey P. Dale, Jun 15 2015 *)

Formula

G.f.: (1+x+2*x^2+3*x^3-2*x^4+x^5-x^6)/(1-34*x^4+x^8). [Colin Barker, Mar 13 2012]
a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=32, a(5)=35, a(6)=67, a(7)=102, a(n)=34*a(n-4)-a(n-8). - Harvey P. Dale, Jun 15 2015

A010130 Continued fraction for sqrt(32).

Original entry on oeis.org

5, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10
Offset: 0

Views

Author

Keywords

Examples

			5.65685424949238019520675489... = 5 + 1/(1 + 1/(1 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010487 (decimal expansion).
Cf. A041052/A041053 (convergents), A248259 (Egyptian fraction).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[32],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    PadRight[{5},100,{10,1,1,1}] (* Harvey P. Dale, Aug 20 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(32)); for (n=0, 20000, write("b010130.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 1, a(2^e) = 10 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 9/4^s). (End)
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (5 + x + x^2 + x^3 + 5*x^4)/((1 - x)*(1 + x + x^2 + x^3)).
a(n) = a(n-4), n > 4. (End)
Showing 1-2 of 2 results.