cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125652 Numbers m such that m^2=A125650(k) for some k (belonging A125651).

Original entry on oeis.org

1, 3, 9, 105, 306, 3567, 10395, 121173, 353124, 4116315, 11995821, 139833537, 407504790, 4750223943, 13843167039, 161367780525, 470260174536, 5481754313907, 15975002767185, 186218278892313, 542679833909754
Offset: 1

Views

Author

Alexander Adamchuk, Nov 29 2006, corrected Dec 14 2006

Keywords

Comments

Indices k such that a(n)^2=A125650(k) are listed in A125651.
3 divides a(n) for n>1. For n>1 a(n) = 3*A041053(2n-3), where A041053(n) = {1, 1, 2, 3, 32, 35, 67, 102, 1087, 1189, 2276, 3465, ...} Denominators of continued fraction convergents to sqrt(32). - Alexander Adamchuk, Jan 19 2007

Examples

			a(2)=3 because A125650(3)=9=3^2; a(3)=9 because A125650(24)=81=9^2.
		

Crossrefs

Formula

a(2k)=A106328(2k); for k>0, a(2k+1)=A106328(2k+1)/2.
a(n) = sqrt(A125650(A125651(n))).
a(n) = 3*A041053(2n-3) for n>1. - Alexander Adamchuk, Jan 19 2007

Extensions

Edited by Max Alekseyev, Jan 11 2007

A010130 Continued fraction for sqrt(32).

Original entry on oeis.org

5, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 10
Offset: 0

Views

Author

Keywords

Examples

			5.65685424949238019520675489... = 5 + 1/(1 + 1/(1 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010487 (decimal expansion).
Cf. A041052/A041053 (convergents), A248259 (Egyptian fraction).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[32],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    PadRight[{5},100,{10,1,1,1}] (* Harvey P. Dale, Aug 20 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(32)); for (n=0, 20000, write("b010130.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 1, a(2^e) = 10 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 9/4^s). (End)
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (5 + x + x^2 + x^3 + 5*x^4)/((1 - x)*(1 + x + x^2 + x^3)).
a(n) = a(n-4), n > 4. (End)

A041052 Numerators of continued fraction convergents to sqrt(32).

Original entry on oeis.org

5, 6, 11, 17, 181, 198, 379, 577, 6149, 6726, 12875, 19601, 208885, 228486, 437371, 665857, 7095941, 7761798, 14857739, 22619537, 241053109, 263672646, 504725755, 768398401, 8188709765, 8957108166, 17145817931, 26102926097, 278175078901, 304278004998
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (5+6*x+11*x^2+17*x^3+11*x^4-6*x^5+5*x^6-x^7)/(1-34*x^4+x^8). - Colin Barker, Jan 03 2012
Showing 1-3 of 3 results.