A041061 Denominators of continued fraction convergents to sqrt(37).
1, 12, 145, 1752, 21169, 255780, 3090529, 37342128, 451196065, 5451694908, 65871534961, 795910114440, 9616792908241, 116197425013332, 1403985893068225, 16964028141832032, 204972323595052609, 2476631911282463340, 29924555258984612689, 361571295019097815608
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Index entries for linear recurrences with constant coefficients, signature (12,1).
Crossrefs
Programs
-
Mathematica
Denominator[Convergents[Sqrt[37],30]] (* or *) LinearRecurrence[{12,1},{1,12},30] (* Harvey P. Dale, May 26 2014 *)
-
Sage
[lucas_number1(n,12,-1) for n in range(1, 18)] # Zerinvary Lajos, Apr 28 2009
Formula
a(n) = F(n, 12), the n-th Fibonacci polynomial evaluated at x=12. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 12*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=12.
G.f.: 1/(1 - 12*x - x^2). (End)
a(n) = ((6+sqrt(37))^(n+1) - (6-sqrt(37))^(n+1))/(2*sqrt(37)). - Rolf Pleisch, May 14 2011
E.g.f.: exp(6*x)*(cosh(sqrt(37)*x) + 6*sinh(sqrt(37)*x)/sqrt(37)). - Stefano Spezia, Aug 09 2025
Comments