A041083 Denominators of continued fraction convergents to sqrt(48).
1, 1, 13, 14, 181, 195, 2521, 2716, 35113, 37829, 489061, 526890, 6811741, 7338631, 94875313, 102213944, 1321442641, 1423656585, 18405321661, 19828978246, 256353060613, 276182038859, 3570537526921, 3846719565780, 49731172316281, 53577891882061
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[48], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *) Denominator[Convergents[Sqrt[48], 40]] (* Vincenzo Librandi, Oct 24 2013 *) LinearRecurrence[{0,14,0,-1},{1,1,13,14},30] (* Harvey P. Dale, Mar 15 2015 *)
Formula
From Colin Barker, Jul 15 2012: (Start)
a(n) = 14*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(3) + 2 and beta = sqrt(3) - 2 be the roots of the equation x^2 - sqrt(12)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 12 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 12*a(2*n) + a(2*n - 1). (End)
Comments