cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041113 Denominators of continued fraction convergents to sqrt(65).

Original entry on oeis.org

1, 16, 257, 4128, 66305, 1065008, 17106433, 274767936, 4413393409, 70889062480, 1138638393089, 18289103351904, 293764292023553, 4718517775728752, 75790048703683585, 1217359297034666112, 19553538801258341377, 314073980117168128144, 5044737220675948391681, 81029869510932342395040
Offset: 0

Views

Author

Keywords

Comments

Sqrt(65) = 16/2 + 16/257 + 16/(257*66305) + 16/(66305*17106433) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 16's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,16} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 01 2023: (Start)
Also called the 16-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 16 kinds of squares available. (End)

Crossrefs

Row n=16 of A073133, A172236 and A352361 and column k=16 of A157103.

Programs

  • Magma
    [n le 2 select (16)^(n-1) else 16*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
    
  • Mathematica
    Denominator[Convergents[Sqrt[65], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
    Fibonacci[Range[30], 16] (* G. C. Greubel, Sep 29 2024 *)
  • SageMath
    A041113=BinaryRecurrenceSequence(16,1,1,16)
    [A041113(n) for n in range(0,31)] # G. C. Greubel, Sep 29 2024

Formula

a(n) = Fibonacci(n+1, 16). - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 16*a(n-1) + a(n-2) for n > 1; a(0) = 1, a(1) = 16.
G.f.: 1/(1 - 16*x - x^2). (End)
a(n) = ((8+sqrt(65))^(n+1) - (8-sqrt(65))^(n+1))/(2*sqrt(65)). - Rolf Pleisch, May 14 2011
E.g.f.: exp(8*x)*(cosh(sqrt(65)*x) + 8*sinh(sqrt(65)*x)/sqrt(65)). - Stefano Spezia, Oct 28 2022