A041113 Denominators of continued fraction convergents to sqrt(65).
1, 16, 257, 4128, 66305, 1065008, 17106433, 274767936, 4413393409, 70889062480, 1138638393089, 18289103351904, 293764292023553, 4718517775728752, 75790048703683585, 1217359297034666112, 19553538801258341377, 314073980117168128144, 5044737220675948391681, 81029869510932342395040
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (16,1).
Crossrefs
Programs
-
Magma
[n le 2 select (16)^(n-1) else 16*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
-
Mathematica
Denominator[Convergents[Sqrt[65], 30]] (* Vincenzo Librandi, Dec 11 2013 *) Fibonacci[Range[30], 16] (* G. C. Greubel, Sep 29 2024 *)
-
SageMath
A041113=BinaryRecurrenceSequence(16,1,1,16) [A041113(n) for n in range(0,31)] # G. C. Greubel, Sep 29 2024
Formula
a(n) = Fibonacci(n+1, 16). - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 16*a(n-1) + a(n-2) for n > 1; a(0) = 1, a(1) = 16.
G.f.: 1/(1 - 16*x - x^2). (End)
a(n) = ((8+sqrt(65))^(n+1) - (8-sqrt(65))^(n+1))/(2*sqrt(65)). - Rolf Pleisch, May 14 2011
E.g.f.: exp(8*x)*(cosh(sqrt(65)*x) + 8*sinh(sqrt(65)*x)/sqrt(65)). - Stefano Spezia, Oct 28 2022
Comments