A041181 Denominators of continued fraction convergents to sqrt(101).
1, 20, 401, 8040, 161201, 3232060, 64802401, 1299280080, 26050404001, 522307360100, 10472197606001, 209966259480120, 4209797387208401, 84405914003648140, 1692328077460171201, 33930967463207072160, 680311677341601614401
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (20,1).
Crossrefs
Programs
-
Magma
[n le 2 select (20)^(n-1) else 20*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
-
Mathematica
Denominator[Convergents[Sqrt[101], 30]] (* Vincenzo Librandi, Dec 12 2013 *) LinearRecurrence[{20,1},{1,20},20] (* Harvey P. Dale, Mar 17 2020 *)
-
SageMath
A041181=BinaryRecurrenceSequence(20,1,1,20) [A041181(n) for n in range(31)] # G. C. Greubel, Sep 29 2024
Formula
a(n) = Fibonacci(n+1, 20), the n-th Fibonacci polynomial evaluated at x=20. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 20*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=20.
G.f.: 1/(1-20*x-x^2). (End)
Comments