cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041181 Denominators of continued fraction convergents to sqrt(101).

Original entry on oeis.org

1, 20, 401, 8040, 161201, 3232060, 64802401, 1299280080, 26050404001, 522307360100, 10472197606001, 209966259480120, 4209797387208401, 84405914003648140, 1692328077460171201, 33930967463207072160, 680311677341601614401
Offset: 0

Views

Author

Keywords

Comments

Generalized Pell numbers (A000129). Antidiagonals of A038207. - Mark Dols, Aug 31 2009
a(n) equals the number of words of length n on alphabet {0,1,...,20} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 03 2023: (Start)
Also called the 20-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 20 kinds of squares available. (End)

Crossrefs

Cf. similar sequences listed in A243399.
Row n=20 of A073133, A172236 and A352361 and column k=20 of A157103.

Programs

  • Magma
    [n le 2 select (20)^(n-1) else 20*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
    
  • Mathematica
    Denominator[Convergents[Sqrt[101], 30]] (* Vincenzo Librandi, Dec 12 2013 *)
    LinearRecurrence[{20,1},{1,20},20] (* Harvey P. Dale, Mar 17 2020 *)
  • SageMath
    A041181=BinaryRecurrenceSequence(20,1,1,20)
    [A041181(n) for n in range(31)] # G. C. Greubel, Sep 29 2024

Formula

a(n) = Fibonacci(n+1, 20), the n-th Fibonacci polynomial evaluated at x=20. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 20*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=20.
G.f.: 1/(1-20*x-x^2). (End)