A237591
Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<=A003056(n)).
Original entry on oeis.org
1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
Offset: 1
Triangle begins:
1;
2;
2, 1;
3, 1;
3, 2;
4, 1, 1;
4, 2, 1;
5, 2, 1;
5, 2, 2;
6, 2, 1, 1;
6, 3, 1, 1;
7, 2, 2, 1;
7, 3, 2, 1;
8, 3, 1, 2;
8, 3, 2, 1, 1;
9, 3, 2, 1, 1;
9, 4, 2, 1, 1;
10, 3, 2, 2, 1;
10, 4, 2, 2, 1;
11, 4, 2, 1, 2;
11, 4, 3, 1, 1, 1;
12, 4, 2, 2, 1, 1;
12, 5, 2, 2, 1, 1;
13, 4, 3, 2, 1, 1;
13, 5, 3, 1, 2, 1;
14, 5, 2, 2, 2, 1;
14, 5, 3, 2, 1, 2;
15, 5, 3, 2, 1, 1, 1;
...
For n = 10 the 10th row of triangle A235791 is [10, 4, 2, 1] so row 10 is [6, 2, 1, 1].
From _Omar E. Pol_, Aug 23 2015: (Start)
Illustration of initial terms:
Row _
1 _|1|
2 _|2 _|
3 _|2 |1|
4 _|3 _|1|
5 _|3 |2 _|
6 _|4 _|1|1|
7 _|4 |2 |1|
8 _|5 _|2 _|1|
9 _|5 |2 |2 _|
10 _|6 _|2 |1|1|
11 _|6 |3 _|1|1|
12 _|7 _|2 |2 |1|
13 _|7 |3 |2 _|1|
14 _|8 _|3 _|1|2 _|
15 _|8 |3 |2 |1|1|
16 _|9 _|3 |2 |1|1|
17 _|9 |4 _|2 _|1|1|
18 _|10 _|3 |2 |2 |1|
19 _|10 |4 |2 |2 _|1|
20 _|11 _|4 _|2 |1|2 _|
21 _|11 |4 |3 _|1|1|1|
22 _|12 _|4 |2 |2 |1|1|
23 _|12 |5 _|2 |2 |1|1|
24 _|13 _|4 |3 |2 _|1|1|
25 _|13 |5 |3 _|1|2 |1|
26 _|14 _|5 _|2 |2 |2 _|1|
27 _|14 |5 |3 |2 |1|2 _|
28 |15 |5 |3 |2 |1|1|1|
...
Also the diagram represents the left part of the front view of the pyramid described in A245092. For the other half front view see A261350. For more information about the pyramid and the symmetric representation of sigma see A237593. (End)
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
. _
| |
| |
| |
| |
| |
_ _ _| |
_| _ _|
_| |
| _|
| _ _|1
_ _ _ _ _ _| | 2
|_ _ _ _ _ _ _|2
7
.
The lengths of the successive line segments from the first vertex to the central vertex of the largest Dyck path are [7, 2, 2, 1] respectively, the same as the 12th row of triangle. (End)
Cf.
A000203,
A001227,
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237593,
A239660,
A239931-
A239934,
A240542,
A244580,
A245092,
A249351,
A259176,
A259177,
A261350,
A261699,
A262626,
A285356,
A286000,
A286001.
-
row[n_]:= Floor[(Sqrt[8*n+1] -1)/2]; f[n_,k_]:= Ceiling[(n+1)/k-(k+1)/2] - Ceiling[(n+1)/(k+1)-(k+2)/2];
Table[f[n,k],{n,1,50},{k,1,row[n]}]//Flatten
(* Hartmut F. W. Hoft, Apr 08 2014 *)
-
row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]);} \\ Michel Marcus, Mar 27 2014
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017
New name from a comment dated Apr 30 2017. -
Omar E. Pol, Jun 18 2023
A235791
Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of every positive integer in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 2, 3, 1, 4, 1, 5, 2, 6, 2, 1, 7, 3, 1, 8, 3, 1, 9, 4, 2, 10, 4, 2, 1, 11, 5, 2, 1, 12, 5, 3, 1, 13, 6, 3, 1, 14, 6, 3, 2, 15, 7, 4, 2, 1, 16, 7, 4, 2, 1, 17, 8, 4, 2, 1, 18, 8, 5, 3, 1, 19, 9, 5, 3, 1, 20, 9, 5, 3, 2, 21, 10, 6, 3, 2, 1, 22, 10, 6, 4, 2, 1, 23, 11, 6, 4, 2, 1, 24, 11, 7, 4, 2, 1
Offset: 1
Triangle begins:
1;
2;
3, 1;
4, 1;
5, 2;
6, 2, 1;
7, 3, 1;
8, 3, 1;
9, 4, 2;
10, 4, 2, 1;
11, 5, 2, 1;
12, 5, 3, 1;
13, 6, 3, 1;
14, 6, 3, 2;
15, 7, 4, 2, 1;
16, 7, 4, 2, 1;
17, 8, 4, 2, 1;
18, 8, 5, 3, 1;
19, 9, 5, 3, 1;
20, 9, 5, 3, 2;
21, 10, 6, 3, 2, 1;
22, 10, 6, 4, 2, 1;
23, 11, 6, 4, 2, 1;
24, 11, 7, 4, 2, 1;
25, 12, 7, 4, 3, 1;
26, 12, 7, 5, 3, 1;
27, 13, 8, 5, 3, 2;
28, 13, 8, 5, 3, 2, 1;
...
For n = 10 the 10th row of triangle is 10, 4, 2, 1, so we have that 10^2 - 4^2 + 2^2 - 1^2 = 100 - 16 + 4 - 1 = 87, the same as A024916(10) = 87, the sum of all divisors of all positive integers <= 10.
From _Omar E. Pol_, Nov 19 2015: (Start)
Illustration of initial terms in the third quadrant:
. y
Row _|
1 _|1|
2 _|2 _|
3 _|3 |1|
4 _|4 _|1|
5 _|5 |2 _|
6 _|6 _|2|1|
7 _|7 |3 |1|
8 _|8 _|3 _|1|
9 _|9 |4 |2 _|
10 _|10 _|4 |2|1|
11 _|11 |5 _|2|1|
12 _|12 _|5 |3 |1|
13 _|13 |6 |3 _|1|
14 _|14 _|6 _|3|2 _|
15 _|15 |7 |4 |2|1|
16 _|16 _|7 |4 |2|1|
17 _|17 |8 _|4 _|2|1|
18 _|18 _|8 |5 |3 |1|
19 _|19 |9 |5 |3 _|1|
20 _|20 _|9 _|5 |3|2 _|
21 _|21 |10 |6 _|3|2|1|
22 _|22 _|10 |6 |4 |2|1|
23 _|23 |11 _|6 |4 |2|1|
24 _|24 _|11 |7 |4 _|2|1|
25 _|25 |12 |7 _|4|3 |1|
26 _|26 _|12 _|7 |5 |3 _|1|
27 _|27 |13 |8 |5 |3|2 _|
28 |28 |13 |8 |5 |3|2|1|
...
T(n,k) is also the number of cells between the k-th vertical line segment (from left to right) and the y-axis in the n-th row of the structure.
Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n.
Also the diagram represents the left part of the front view of the pyramid described in A245092. (End)
For more information about the diagram see A286001. - _Omar E. Pol_, Dec 19 2020
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
_
| |
| |
| |
| |
| |
_ _ _| |
_| _ _|
_| |
| _|
| _ _|
_ _ _ _ _ _| |3 1
|_ _ _ _ _ _ _|
12 5
.
For n = 12 and k = 1 the total length of all line segments between the first vertex and the central vertex of the largest Dyck path is equal to 12, so T(12,1) = 12.
For n = 12 and k = 2 the total length of all line segments between the second vertex and the central vertex of the largest Dyck path is equal to 5, so T(12,2) = 5.
For n = 12 and k = 3 the total length of all line segments between the third vertex and the central vertex of the largest Dyck path is equal to 3, so T(12,3) = 3.
For n = 12 and k = 4 the total length of all line segments between the fourth vertex and the central vertex of the largest Dyck path is equal to 1, so T(12,4) = 1.
Hence the 12th row of triangle is [12, 5, 3, 1]. (End)
Cf.
A000203,
A000217,
A001227,
A196020,
A211343,
A228813,
A231345,
A231347,
A235794,
A236106,
A236112,
A237270,
A237271,
A237593,
A239660,
A245092,
A261699,
A262626,
A286000,
A286001,
A280850,
A280851,
A296508,
A335616.
-
row[n_] := Floor[(Sqrt[8*n + 1] - 1)/2]; f[n_, k_] := Ceiling[(n + 1)/k - (k + 1)/2]; Table[f[n, k], {n, 1, 150}, {k, 1, row[n]}] // Flatten (* Hartmut F. W. Hoft, Apr 07 2014 *)
-
row(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); \\ Michel Marcus, Mar 27 2014
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
A042975
Decimal expansion of sqrt(0.121121112...).
Original entry on oeis.org
3, 4, 8, 0, 2, 4, 5, 8, 5, 4, 9, 8, 0, 9, 5, 3, 9, 4, 4, 2, 8, 8, 3, 3, 3, 6, 8, 4, 2, 4, 0, 9, 5, 7, 1, 9, 7, 2, 6, 4, 0, 7, 8, 7, 7, 2, 1, 2, 8, 6, 6, 2, 8, 1, 6, 0, 4, 5, 6, 3, 0, 3, 6, 4, 9, 7, 4, 4, 1, 4, 8, 2, 4, 2, 2, 0, 5, 7, 6, 4, 1, 3, 6, 0, 8, 7, 3, 9, 2, 7, 1, 3, 6, 8, 4, 3, 1, 6, 8
Offset: 0
-
With[{c=FromDigits[Flatten[Most[Riffle[Table[PadRight[{},n,1],{n,50}], 2]]]]},RealDigits[Sqrt[c/10^IntegerLength[c]],10,120][[1]]] (* Harvey P. Dale, Oct 12 2013 *)
A056030
Continued fraction for 0.12112111211112... .
Original entry on oeis.org
0, 8, 3, 1, 9, 3, 110, 1, 7, 1, 10, 4, 2, 10, 1, 3, 1, 1, 10, 2, 5, 8, 1, 9, 8, 1, 997, 1, 109, 8, 1, 111, 4, 9, 2, 2, 1, 1, 1, 1, 2, 1, 53, 1, 3, 1, 6, 5, 1, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 59, 2, 1, 1, 1, 8, 2, 9, 11, 5, 6, 33, 1, 1, 3, 2, 6, 9, 3, 2, 20, 1, 7, 1, 27, 1, 20, 5, 1, 229, 1, 2, 12, 6
Offset: 1
0.121121112111121111121111112... = 0 + 1/(8 + 1/(3 + 1/(1 + 1/(9 + ...)))). - _Harry J. Smith_, May 08 2009
-
ContinuedFraction[N[1/9,1000]+N[Sum[10^-(n(n+3)/2),{n,1,50}],1000],100]
Original entry on oeis.org
2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1
Craig Michoski (michoski(AT)google.com), Oct 05 2010
-
A003056:= [seq(n$(n+1),n=1..20)]:
A003056+[$1..nops(A003056)]; # Robert Israel, Dec 24 2017
-
Array[# + Floor[(Sqrt[1 + 8 #] - 1)/2] &, 74] (* Michael De Vlieger, Dec 24 2017 *)
Accumulate[Flatten[Table[Join[PadRight[{},n,1],{2}],{n,0,15}]]] (* Harvey P. Dale, Aug 14 2022 *)
-
a(n) = n + floor((sqrt(1+8*n)-1)/2) \\ Iain Fox, Dec 25 2017
-
from math import isqrt
def A181133(n): return n+(isqrt((n<<3)+1)-1>>1) # Chai Wah Wu, Feb 10 2023
Definition re-fitted to something precise, sequence extended beyond a(15), and comment added by
R. J. Mathar, Oct 24 2010
A042976
Decimal expansion of 0.121121112...^2.
Original entry on oeis.org
0, 1, 4, 6, 7, 0, 3, 2, 3, 7, 9, 9, 0, 3, 4, 7, 6, 9, 1, 0, 3, 6, 7, 6, 9, 9, 0, 4, 8, 5, 6, 9, 9, 2, 1, 6, 7, 6, 8, 2, 2, 1, 2, 5, 7, 0, 1, 0, 5, 2, 3, 4, 7, 8, 2, 3, 2, 5, 6, 5, 7, 0, 1, 2, 1, 4, 7, 8, 8, 2, 2, 1, 2, 7, 4, 5, 7, 0, 7, 2, 5, 6, 5, 7, 0, 1, 0, 2, 4, 3, 9, 1, 9, 0, 3, 2, 5, 6, 7
Offset: 0
A230517
An irrational x such that the decimal representation of neither x nor sqrt(x) contains the digit 0.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
0.12132113211112111112111111213111112113131112111111111411111113...
-
pdeci(x, nb) = {x = x * 10; for (n=1, nb, d = floor(x); x = (x-d)*10; print1(d, ", ");); print();}
finddeci(x) = {x = x * 10; found = 0; nd = 1; while (! found, d = floor(x); x = (x-d)*10; if (d == 0, found = 1, nd++);); nd;}
changedeci(x, ndeci) = {deci = floor(x * 10^ndeci) - 10*floor(x * 10^(ndeci-1)); x += 2/10^ndeci; x;}
lista(nn) = {prec = 2*nn; default(realprecision, prec); x = 0; for (n=1, prec, x = 10*x + 1 + issquare(9+8*n);); x /= 10^prec; ok = 0; while (! ok, y = sqrt(x); ndeci = finddeci(y); print1(ndeci, ", "); x = changedeci(x, ndeci); if (ndeci > nn, ok =1);); print(); pdeci(x, nn); print("sqrt(x)=", sqrt(x));} \\ Michel Marcus, Oct 22 2013
Showing 1-7 of 7 results.
Comments