cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A042974 n 1's followed by a 2.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The number 1.21121112... is irrational. - Robert G. Wilson v, Jul 05 2000
Fixed point of the following mapping w. Suppose x(n) takes values in {1,2} and w(n)=[x(1),x(2),...,x(n)]. Next define w(n+1)=[x(1),x(2),...,x(n),x(n-1)] if x(n)=1 and w(n+1)=[x(1),x(2),...,x(n),x(n-1),x(n-1)] if x(n)=2. Then taking x(1)=1 and x(2)=2 we get w(infinity)=A042974 (i.e., x(n)=A042974(n)). - Benoit Cloitre, Jan 11 2013

Examples

			1.211211121111211111211111121111111211111111211111111121111111111211111...
		

Crossrefs

Cf. A042975, A056030 (continued fraction).

Programs

  • Haskell
    a042974 n = a042974_list !! (n-1)
    a042974_list =  1 : 2 :
       concat (zipWith replicate (tail a042974_list) a042974_list)
    -- Reinhard Zumkeller, Dec 08 2011
  • Mathematica
    Table[PadLeft[{2},n,1],{n,2,20}]//Flatten (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    {a(n) = 1 + issquare(9 + 8*n)}; /* Michael Somos, Jan 12 2000 */
    
  • PARI
    { default(realprecision, 20080); x=0; for (n=1, 20000, x=10*x + 1 + issquare(9+8*n)); x/=10^19999; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b042974.txt", n, " ", d)); } \\ Harry J. Smith, May 08 2009
    
  • PARI
    sum(k=1,sqrtint(8*default(realprecision)+9),10^-(2*k-1)^2, 1/9.) \\ Charles R Greathouse IV, Feb 05 2025
    

A230517 An irrational x such that the decimal representation of neither x nor sqrt(x) contains the digit 0.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Michel Marcus, Oct 22 2013

Keywords

Comments

The rational number 1/9 is an example of a number in [0, 1] such that the decimal representation of neither x nor sqrt(x) contains the digit 0. The object of Problem 10439 of the Amer. Math. Monthly was to find an irrational with the same property (see link).
The solution proposed by Jerrold Grossman defines a sequence of irrationals starting with c1= 0.121121112... (A042974). Moving from left to right, the 0's in the decimal expansion of sqrt(cn) are eliminated by increasing the corresponding digit in the decimal expansion of cn by 2. The limit of cn is a number with the desired property.
The indices of the decimals that are successively changed are 4, 8, 29, 38, 40, 54, 62, 70, 72, 96, 118, ... (see print(ndeci) in PARI script).
The decimal expansion of sqrt(x) begins with 0.3483118317127931144162557719319698175373163374567....

Examples

			0.12132113211112111112111111213111112113131112111111111411111113...
		

Crossrefs

Programs

  • PARI
    pdeci(x, nb) = {x = x * 10; for (n=1, nb, d = floor(x); x = (x-d)*10; print1(d, ", ");); print();}
    finddeci(x) = {x = x * 10; found = 0; nd = 1; while (! found, d = floor(x); x = (x-d)*10; if (d == 0, found = 1, nd++);); nd;}
    changedeci(x, ndeci) = {deci = floor(x * 10^ndeci) - 10*floor(x * 10^(ndeci-1)); x += 2/10^ndeci; x;}
    lista(nn) = {prec = 2*nn; default(realprecision, prec); x = 0; for (n=1, prec, x = 10*x + 1 + issquare(9+8*n);); x /= 10^prec; ok = 0; while (! ok, y = sqrt(x); ndeci = finddeci(y); print1(ndeci, ", "); x = changedeci(x, ndeci); if (ndeci > nn, ok =1);); print(); pdeci(x, nn); print("sqrt(x)=", sqrt(x));} \\ Michel Marcus, Oct 22 2013
Showing 1-2 of 2 results.