cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A011539 "9ish numbers": decimal representation contains at least one nine.

Original entry on oeis.org

9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298
Offset: 1

Views

Author

Keywords

Comments

The 9ish numbers are closed under lunar multiplication. The lunar primes (A087097) are a subset.
Almost all numbers are 9ish, in the sense that the asymptotic density of this set is 1: Among the 9*10^(n-1) n-digit numbers, only a fraction of 0.8*0.9^(n-1) doesn't have a digit 9, and this fraction tends to zero (< 1/10^k for n > 22k-3). This explains the formula a(n) ~ n. - M. F. Hasler, Nov 19 2018
A 9ish number is a number whose largest decimal digit is 9. - Stefano Spezia, Nov 16 2023

Examples

			E.g. 9, 19, 69, 90, 96, 99 and 1234567890 are all 9ish.
		

Crossrefs

Cf. A088924 (number of n-digit terms).
Cf. A087062 (lunar product), A087097 (lunar primes).
A102683 (number of digits 9 in n); fixed points > 8 of A068505.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), this sequence (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).
Supersequence of A043525.

Programs

  • GAP
    Filtered([1..300],n->9 in ListOfDigits(n)); # Muniru A Asiru, Feb 25 2019
    
  • Haskell
    a011539 n = a011539_list !! (n-1)
    a011539_list = filter ((> 0) . a102683) [1..]  -- Reinhard Zumkeller, Dec 29 2011
    
  • Maple
    seq(`if`(numboccur(9, convert(n, base, 10))>0, n, NULL), n=0..100); # François Marques, Oct 12 2020
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 10 ], 9 ]>0)& ] (* François Marques, Oct 12 2020 *)
    Select[Range[300],DigitCount[#,10,9]>0&] (* Harvey P. Dale, Mar 04 2023 *)
  • PARI
    is(n)=n=vecsort(digits(n));n[#n]==9 \\ Charles R Greathouse IV, May 15 2013
    
  • PARI
    select( is_A011539(n)=vecmax(digits(n))==9, [1..300]) \\ M. F. Hasler, Nov 16 2018
    
  • Python
    def ok(n): return '9' in str(n)
    print(list(filter(ok, range(299)))) # Michael S. Branicky, Sep 19 2021
    
  • Python
    def A011539(n):
        def f(x):
            l = (s:=str(x)).find('9')
            if l >= 0: s = s[:l]+'8'*(len(s)-l)
            return n+int(s,9)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

Formula

Complement of A007095. A102683(a(n)) > 0 (defines this sequence). A068505(a(n)) = a(n): fixed points of A068505 are the terms of this sequence and the numbers < 9. - Reinhard Zumkeller, Dec 29 2011, edited by M. F. Hasler, Nov 16 2018
a(n) ~ n. - Charles R Greathouse IV, May 15 2013

A043489 Numbers having one 0 in base 10.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 301, 302, 303
Offset: 1

Views

Author

Keywords

Comments

From Hieronymus Fischer, May 28 2014: (Start)
Inversion:
Given a term m, the index n such that a(n) = m can be calculated by the following procedure [see Prog section with an implementation in Smalltalk]. With k := floor(log_10(m)), z = digit position of the '0' in m counted from the right (starting with 0).
Case 1: A043489_inverse(m) = 1 + Sum_{j=1..k} A052382_inverse(floor(m/10^j))*9^(j-1), if z = 0.
Case 2: A043489_inverse(m) = 1 + A043489_inverse(m - c - m mod 10^z) + A052382_inverse(m mod 10^z)) - (9^z - 1)/8, if z > 0, where c := 1, if the digit at position z+1 of m is ‘1’ and k > z + 1, otherwise c := 10.
Example 1: m = 990, k = 2, z = 0 (Case 1), A043489_inverse(990) = 1 + A052382_inverse(99))*1 + A052382_inverse(9))*9 = 1 + 90 + 81 = 172.
Example 2: m = 1099, k = 3, z = 2 (Case 2), A043489_inverse(1099) = 1 + A043489_inverse(990) + A052382_inverse(99)) - 10 = 1 + A043489_inverse(990) + 80 = 1 + 172 + 80 = 253.
(End)

Examples

			a(10^1)= 90.
a(10^2)= 590.
a(10^3)= 4190.
a(10^4)= 35209.
a(10^5)= 308949.
a(10^6)= 2901559.
a(10^7)= 27250269.
a(10^8)= 263280979.
a(10^9)= 2591064889.
a(10^10)= 25822705899.
a(10^20)= 366116331598324670219.
a(10^50)= 3.7349122484477433715662812...*10^51
a(10^100)= 4.4588697999177752943575344...*10^103.
a(10^1000)= 5.5729817962143143812258616...*10^1045.
[Examples by _Hieronymus Fischer_, May 28 2014]
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,9000],DigitCount[#,10,0]==1&] (* Enrique Pérez Herrero, Nov 29 2013 *)
  • PARI
    is(n)=#select(d->d==0, digits(n))==1 \\ Charles R Greathouse IV, Oct 06 2016
  • Smalltalk
    A043489_nextTerm
      "Answers the minimal number > m which contains exactly 1 zero digit (in base 10), where m is the receiver.
      Usage: a(n) A043489_nextTerm
      Answer: a(n+1)"
      | d d0 s n p |
      n := self.
      p := 1.
      s := n.
      (d0 := n // p \\ 10) = 0
         ifTrue:
              [p := 10 * p.
              s := s + 1].
      [(d := n // p \\ 10) = 9] whileTrue:
              [s := s - (8 * p).
              p := 10 * p].
      (d = 0 or: [d0 = 0]) ifTrue: [s := s - (p // 10)].
      ^s + p
    [by Hieronymus Fischer, May 28 2014]
    ------------------
    
  • Smalltalk
    A043489
    "Answers the n-th number such that number of 0's in base 10 is 1, where n is the receiver. Uses the method zerofree: base from A052382.
      Usage: n A043489
      Answer: a(n)"
      | n a b dj cj gj ej j r |
      n := self.
      n <= 1 ifTrue: [^r := 0].
      n <= 10 ifTrue: [^r := (n - 1) * 10].
      j := n invGeometricSum2: 9.
      b := j geometricSum2: 9.
      cj := 9 ** j.
      dj := (j + 1) * cj.
      gj := (cj - 1) / 8.
      ej := 10 ** j.
      a := n - b - 2.
      b := a \\ dj.
      r := (a // dj + 1) * ej * 10.
      [b >= cj] whileTrue:
              [a := b - cj.
              cj := cj // 9.
              dj := j * cj.
              b := a \\ dj.
              r := (a // dj + 1) * ej + r.
              gj := gj - cj.
              ej := ej // 10.
              j := j - 1].
      r := (b + gj zerofree: 10) + r.
      ^r
    [by Hieronymus Fischer, May 28 2014]
    ------------------
    
  • Smalltalk
    A043489_inverse
      "Answers the index n such that A043489(n) = m, where m is the receiver. Uses A052382_inverse from A052382.
      Usage: n zerofree_inverse: b [b = 10 for this sequence]
      Answer: a(n)"
      | m p q s r m1 mr |
      m := self.
      m < 100 ifTrue: [^m // 10 + 1].
      p := q := 1.
      s := 0.
      [m // p \\ 10 = 0] whileFalse:
         [p := 10 * p.
         s := s + q.
         q := 9 * q].
      p > 1
         ifTrue:
         [r := m \\ p.
         p := 10 * p.
         m1 := m // p.
         (m1 \\ 10 = 1 and: [m1 > 10])
              ifTrue: [mr := m - r - 1]
              ifFalse: [mr := m - r - 10].
         ^mr A043489_inverse + r A052382_inverse - s + 1]
         ifFalse:
         [s := 1.
         p := 10.
         q := 1.
         [p < m] whileTrue:
              [s := (m // p) A052382_inverse * q + s.
              p := 10 * p.
              q := 9 * q].
         ^s]
    [by Hieronymus Fischer, May 28 2014]
    

Formula

From Hieronymus Fischer, May 28 2014: (Start)
a(1 + Sum_{j=1..n} j*9^j) = 10*(10^n - 1).
a(2 + Sum_{j=1..n} j*9^j) = 10^(n+1) + (10^n - 1)/9 = (91*10^n - 1)/9.
a((9^(n+1) - 1)/8 + 1 + Sum_{j=1..n} j*9^j) = 10*(10^(n+1) - 1)/9, where Sum_{j=1..n} j*9^j = (1-(n+1)*9^n+n*9^(n+1))*9/64.
Iterative calculation:
With i := digit position of the '0' in a(n) counted from the right (starting with 0), j = number of contiguous '9' digits in a(n) counted from position 1, if i = 0, and counted from position 0, if i > 0 (0 if none)
a(n+1) = a(n) + 10 + (10^j - 1)/9, if i = 0.
a(n+1) = a(n) + 1 + (10^(j-1) - 1)/9, if i = j > 0.
a(n+1) = a(n) + 1 + (10^j - 1)/9, if i > j.
[see Prog section for an implementation in Smalltalk].
Direct calculation:
Set j := max( m | (Sum_{i=1..m} i*9^i) < n) and c(1) := n - 2 - Sum_{i=1..j} i*9^i. Define successively,
c(i+1) = c(i) mod ((j-i+2)*9^(j-i+1)) - 9^(j-i+1) while this value is >= 0, and set k := i for the last such index for which c(i) >= 0.
Then a(n) = A052382(c(k) mod ((j-k+2)*9^(j-k+1)) + (9^(j-k+1)-1)/8) + Sum_{i=1..k} ((floor(c(i)/((j-i+2)*9^(j-i+1))) + 1) * 10^(j-i+2)). [see Prog section for an implementation in Smalltalk].
Behavior for large n:
a(n) = O(n^(log(10)/log(9))/log(n)).
a(n) = O(n^1.047951651.../log(n)).
Inequalities:
a(n) < 2*(8n)^log_9(10)/(log_9(8n)*log_9(10)).
a(n) < (8n)^log_9(10)/(log_9(8n)*log_9(10)), for large n (n > 10^50).
a(n) > 0.9*(8n)^log_9(10)/(log_9(8n)*log_9(10)), for 2 < n < 10^50.
a(n) >= A011540(n), equality holds for n <= 10.
(End)

A043493 Numbers that contain a single 1.

Original entry on oeis.org

1, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 100, 102, 103, 104, 105, 106, 107, 108, 109, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) >> n^k where k = log(10)/log(9) = 1.04795.... - Charles R Greathouse IV, Jan 21 2025

A043509 Numbers having exactly one 5 in base 10.

Original entry on oeis.org

5, 15, 25, 35, 45, 50, 51, 52, 53, 54, 56, 57, 58, 59, 65, 75, 85, 95, 105, 115, 125, 135, 145, 150, 151, 152, 153, 154, 156, 157, 158, 159, 165, 175, 185, 195, 205, 215, 225, 235, 245, 250, 251, 252, 253, 254, 256, 257, 258, 259
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) ≍ n^k log n, with k = log 9/log 10 = 0.9542425... = A104139. - Charles R Greathouse IV, Nov 01 2022

A043513 Numbers having one 6 in base 10.

Original entry on oeis.org

6, 16, 26, 36, 46, 56, 60, 61, 62, 63, 64, 65, 67, 68, 69, 76, 86, 96, 106, 116, 126, 136, 146, 156, 160, 161, 162, 163, 164, 165, 167, 168, 169, 176, 186, 196, 206, 216, 226, 236, 246, 256, 260, 261, 262, 263, 264, 265, 267, 268
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],DigitCount[#,10,6]==1&] (* Harvey P. Dale, Aug 15 2011 *)

A043521 Numbers having one 8 in base 10.

Original entry on oeis.org

8, 18, 28, 38, 48, 58, 68, 78, 80, 81, 82, 83, 84, 85, 86, 87, 89, 98, 108, 118, 128, 138, 148, 158, 168, 178, 180, 181, 182, 183, 184, 185, 186, 187, 189, 198, 208, 218, 228, 238, 248, 258, 268, 278, 280, 281, 282, 283, 284, 285, 286, 287, 289, 298, 308, 318
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],DigitCount[#,10,8]==1&] (* Harvey P. Dale, Jan 06 2012 *)
  • PARI
    is(n)=my(d=digits(n)); sum(i=1,#d, d[i]==8)==1 \\ Charles R Greathouse IV, Feb 12 2017
    
  • Python
    def ok(n): return str(n).count('8') == 1
    print(list(filter(ok, range(320)))) # Michael S. Branicky, Aug 18 2021

A043497 Numbers having one 2 in base 10.

Original entry on oeis.org

2, 12, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92, 102, 112, 120, 121, 123, 124, 125, 126, 127, 128, 129, 132, 142, 152, 162, 172, 182, 192, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A043501 Numbers having one 3 in base 10.

Original entry on oeis.org

3, 13, 23, 30, 31, 32, 34, 35, 36, 37, 38, 39, 43, 53, 63, 73, 83, 93, 103, 113, 123, 130, 131, 132, 134, 135, 136, 137, 138, 139, 143, 153, 163, 173, 183, 193, 203, 213, 223, 230, 231, 232, 234, 235, 236, 237, 238, 239, 243, 253
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A043505 Numbers having one 4 in base 10.

Original entry on oeis.org

4, 14, 24, 34, 40, 41, 42, 43, 45, 46, 47, 48, 49, 54, 64, 74, 84, 94, 104, 114, 124, 134, 140, 141, 142, 143, 145, 146, 147, 148, 149, 154, 164, 174, 184, 194, 204, 214, 224, 234, 240, 241, 242, 243, 245, 246, 247, 248, 249, 254
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A043517 Numbers having one 7 in base 10.

Original entry on oeis.org

7, 17, 27, 37, 47, 57, 67, 70, 71, 72, 73, 74, 75, 76, 78, 79, 87, 97, 107, 117, 127, 137, 147, 157, 167, 170, 171, 172, 173, 174, 175, 176, 178, 179, 187, 197, 207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274, 275, 276
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[9000],DigitCount[#,10,7]==1&]
Showing 1-10 of 10 results.