cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A087984 9-ish numbers (A011539) which are not lunar primes (A087097).

Original entry on oeis.org

9, 119, 129, 139, 149, 159, 169, 179, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 229, 239, 249, 259, 269, 279, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 339, 349, 359, 369, 379, 389, 390, 391, 392, 393, 394, 395, 396
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Oct 30 2003

Keywords

Comments

Three and four digit 9ish numbers are lunar primes iff the smallest digit is strictly smaller than the first and the last digit. This is no longer true from 10109 = 109 x 109 on (where x = lunar product).

Crossrefs

Cf. A011539, A087097. A133626 and A134211 are subsequences.

Programs

Formula

A011539 \ A087097. - M. F. Hasler, Nov 19 2018

A088923 Duplicate of A011539.

Original entry on oeis.org

9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 119, 129
Offset: 1

Views

Author

Keywords

A007095 Numbers in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84
Offset: 0

Views

Author

Keywords

Comments

Also numbers without 9 as a digit.
Complement of A011539: A102683(a(n)) = 0; A068505(a(n)) != a(n)). - Reinhard Zumkeller, Dec 29 2011

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8); A057104, A037479.
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8).
Cf. A082838.

Programs

  • Haskell
    a007095 = f . subtract 1 where
       f 0 = 0
       f v = 10 * f w + r   where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014, Dec 29 2011
    
  • Magma
    [ n: n in [0..74] | not 9 in Intseq(n) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    A007095 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,9): return op(convert(l,base,10,10^nops(l))): end: seq(A007095(n),n=0..67); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 9]], {n, 0, 75}]
  • PARI
    a(n)=if(n<1,0,if(n%9,a(n-1)+1,10*a(n/9)))
    
  • PARI
    A007095(n)=fromdigits(digits(n, 9)) \\ Michel Marcus, Dec 29 2018
    
  • Python
    # and others: see OEIS Wiki page (cf. LINKS).
    
  • Python
    from gmpy2 import digits
    def A007095(n): return int(digits(n,9)) # Chai Wah Wu, May 06 2025
  • sh
    seq 0 1000 | grep -v 9; # Joerg Arndt, May 29 2011
    

Formula

a(0) = 0, a(n) = 10*a(n/9) if n==0 (mod 9), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Sum_{n>1} 1/a(n) = A082838 = 22.92067... (Kempner series). - Bernard Schott, Dec 29 2018; edited by M. F. Hasler, Jan 13 2020

A121029 Multiples of 9 containing a 9 in their decimal representation.

Original entry on oeis.org

9, 90, 99, 189, 198, 279, 297, 369, 396, 459, 495, 549, 594, 639, 693, 729, 792, 819, 891, 900, 909, 918, 927, 936, 945, 954, 963, 972, 981, 990, 999, 1089, 1098, 1179, 1197, 1269, 1296, 1359, 1395, 1449, 1494, 1539, 1593, 1629, 1692, 1719, 1791, 1809
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

Formula

a(n) ~ 9n. - Charles R Greathouse IV, Feb 12 2017

Extensions

Corrected by T. D. Noe, Oct 25 2006
Typo in comment fixed by Reinhard Zumkeller, Aug 13 2010

A011532 Numbers that contain a 2.

Original entry on oeis.org

2, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92, 102, 112, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 142, 152, 162, 172, 182, 192, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers that contain a digit k: A011531 (k=1), A011533 (k=3), A011534 (k=4), A011535 (k=5), A011536 (k=6), A011537 (k=7), A011538 (k=8), A011539 (k=9), A011540 (k=0).

Programs

  • GAP
    Filtered([1..220],n->2 in ListOfDigits(n)); # Muniru A Asiru, Feb 23 2019
  • Haskell
    a011532 n = a011532_list !! (n-1)
    a011532_list = filter ((elem '2') . show) [0..]
    -- Reinhard Zumkeller, Apr 10 2015
    
  • Magma
    [n: n in [0..500] | 2 in Intseq(n)]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    Select[Range[600] - 1, DigitCount[#, 10, 2]>0 &] (* Vincenzo Librandi, Jan 11 2016 *)

Formula

a(n) ~ n. - Charles R Greathouse IV, Feb 12 2017

A011533 Numbers that contain a 3.

Original entry on oeis.org

3, 13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 53, 63, 73, 83, 93, 103, 113, 123, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 153, 163, 173, 183, 193, 203, 213, 223, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 243, 253
Offset: 1

Views

Author

Keywords

Crossrefs

Complement: A052405.
Cf. A016189.
Numbers that contain a digit k: A011531 (k=1), A011532 (k=2), A011534 (k=4), A011535 (k=5), A011536 (k=6), A011537 (k=7), A011538 (k=8), A011539 (k=9), A011540 (k=0).

Programs

  • GAP
    Filtered([1..260],n->3 in ListOfDigits(n)); # Muniru A Asiru, Feb 23 2019
  • Haskell
    a011533 n = a011533_list !! (n-1)
    a011533_list = filter ((elem '3') . show) [0..]
    -- Reinhard Zumkeller, Apr 10 2015
    
  • Magma
    [n: n in [0..500] | 3 in Intseq(n)]; // Vincenzo Librandi, Jan 11 2016
    
  • Maple
    M:= 3: # to get all terms of up to M digits
    B:= {3}: A:= {3}:
    for i from 2 to M do
       B:= map(t -> seq(10*t+j,j=0..9),B) union
          {seq(10*x+3,x=10^(i-2)..10^(i-1)-1)}:
       A:= A union B;
    od:
    sort(convert(A,list));# Robert Israel, Jan 11 2016
  • Mathematica
    Select[Range[600] - 1, DigitCount[#, 10, 3]>0 &] (* Vincenzo Librandi, Jan 11 2016 *)
  • PARI
    isok(n)=my(d=digits(n)); for (k=1, #d, if (d[k] == 3, return (1))); \\ Michel Marcus, Jan 11 2016
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Aug 28 2012
For m >= 1, a(10^m - 9^m) = 10^m-7, a(10^m - 9^m + 1) = 10^m + 3. - Robert Israel, Jan 11 2016

A011534 Numbers that contain a 4.

Original entry on oeis.org

4, 14, 24, 34, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 64, 74, 84, 94, 104, 114, 124, 134, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 164, 174, 184, 194, 204, 214, 224, 234, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 254
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers that contain a digit k: A011531 (k=1), A011532 (k=2), A011533 (k=3), A011535 (k=5), A011536 (k=6), A011537 (k=7), A011538 (k=8), A011539 (k=9), A011540 (k=0).

Programs

Formula

a(n) ~ n. - Charles R Greathouse IV, Feb 12 2017

A087097 Lunar primes (formerly called dismal primes) (cf. A087062).

Original entry on oeis.org

19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, 219, 309, 319, 329, 409, 419, 429, 439, 509, 519, 529, 539, 549, 609, 619, 629, 639, 649, 659, 709, 719, 729, 739, 749, 759, 769, 809, 819, 829, 839, 849, 859, 869, 879, 901, 902, 903, 904, 905, 906, 907, 908, 909, 912, 913, 914, 915, 916, 917, 918, 919, 923, 924, 925, 926, 927, 928, 929, 934, 935, 936, 937, 938, 939, 945, 946, 947, 948, 949, 956, 957, 958, 959, 967, 968, 969, 978, 979, 989
Offset: 1

Views

Author

Marc LeBrun, Oct 20 2003

Keywords

Comments

9 is the multiplicative unit. A number is a lunar prime if it is not a lunar product (see A087062 for definition) r*s where neither r nor s is 9.
All lunar primes must contain a 9, so this is a subsequence of A011539.
Also, numbers k such that the lunar sum of the lunar prime divisors of k is k. - N. J. A. Sloane, Aug 23 2010
We have changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014
(Lunar) composite numbers are not necessarily a product of primes. (For example 1 = 1*x for any x in {1, ..., 9} is not a prime but can't be written as the product of primes.) Therefore, to establish primality, it is not sufficient to consider only products of primes; one has to consider possible products of composite numbers as well. - M. F. Hasler, Nov 16 2018

Examples

			8 is not prime since 8 = 8*8. 9 is not prime since it is the multiplicative unit. 10 is not prime since 10 = 10*8. Thus 19 is the smallest prime.
		

Crossrefs

Programs

  • PARI
    A87097=select( is_A087097(n)={my(d); if( n<100, n>88||(n%10==9&&n>9), vecmax(d=digits(n))<9, 0, #d<5, vecmin(d)A087062(m,k)==n&&return))))}, [1..999]) \\ M. F. Hasler, Nov 16 2018

Formula

The set { m in A011539 | 9A054054(m) < min(A000030(m),A010879(m)) } (9ish numbers A011539 with 2 digits or such that the smallest digit is strictly smaller than the first and the last digit) is equal to this sequence up to a(1656) = 10099. The next larger 9ish number 10109 is also in that set but is the lunar square of 109, thus not in this sequence of primes. - M. F. Hasler, Nov 16 2018

A102683 Number of digits 9 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    a102683 =  length . filter (== '9') . show
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    a[n_] := DigitCount[n, 10, 9]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)

Formula

a(A007095(n)) = 0; a(A011539(n)) > 0. - Reinhard Zumkeller, Dec 29 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/10) - floor(n/10^j)), where m=floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(A235049(n)) = 0. - Reinhard Zumkeller, Apr 16 2014

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A082838 Decimal expansion of Kempner series Sum_{k>=1, k has no digit 9 in base 10} 1/k.

Original entry on oeis.org

2, 2, 9, 2, 0, 6, 7, 6, 6, 1, 9, 2, 6, 4, 1, 5, 0, 3, 4, 8, 1, 6, 3, 6, 5, 7, 0, 9, 4, 3, 7, 5, 9, 3, 1, 9, 1, 4, 9, 4, 4, 7, 6, 2, 4, 3, 6, 9, 9, 8, 4, 8, 1, 5, 6, 8, 5, 4, 1, 9, 9, 8, 3, 5, 6, 5, 7, 2, 1, 5, 6, 3, 3, 8, 1, 8, 9, 9, 1, 1, 1, 2, 9, 4, 4, 5, 6, 2, 6, 0, 3, 7, 4, 4, 8, 2, 0, 1, 8, 9, 8, 9, 9, 0, 9
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 9 (A011539) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			22.920676619264150348163657094375931914944762436998481568541998356... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A007095 (numbers with no '9'), A011539 (numbers with a '9'), A024101.
Cf. A082830 .. A082839 (analog for digits 1, ..., 8 and 0), A140502.

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive link *)

Formula

Equals Sum_{k in A007095\{0}} 1/k, where A007095 = numbers with no digit 9. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Apr 14 2009
More terms from Robert G. Wilson v, Jun 01 2009
Minor edits by M. F. Hasler, Jan 13 2020
Showing 1-10 of 55 results. Next