A005271 Number of perfect matchings in n-cube.
1, 2, 9, 272, 589185, 16332454526976, 391689748492473664721077609089
Offset: 1
Examples
G.f. = x + 2*x^2 + 9*x^3 + 272*x^4 + 589185*x^5 + 16332454526976*x^6 + ...
References
- L. H. Clark, J. C. George and T. D. Porter, On the number of 1-factors in the n-cube, Congress. Numer., 127 (1997), 67-69.
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 18).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. K. Chari and M. Joswig, Complexes of discrete Morse functions, Disc. Math. 302 (2005), 39-51.
- D. Deford, Seating rearrangements on arbitrary graphs, Involve 7(6): 787-805 (2014); See Table 3.
- N. Graham and F. Harary, The number of perfect matchings in a hypercube, Appl. Math. Lett., 1 (1988), 45-48.
- N. Graham and F. Harary, The number of perfect matchings in a hypercube, Appl. Math. Lett. 1.1 (1988), 45-48. (Annotated scanned copy)
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Patric R. J. Östergård and V. H. Pettersson, Enumerating Perfect Matchings in n-Cubes, Order, November 2013, Volume 30, Issue 3, pp 821-835.
- Ville Pettersson, Graph Algorithms for Constructing and Enumerating Cycles and Related Structures, Preprint 2015.
- J. Propp, Twenty open problems in enumeration of matchings, arXiv:math/9801061 [math.CO], 1998-1999.
- J. Propp, Updated article
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- H. Sachs and B. Alspach, Problem 298: How many perfect matchings does the graph of the n-cube have?, Discrete Math., 191 (1998), 251-252. [From _N. J. A. Sloane_, Feb 18 2012]
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
- Eric Weisstein's World of Mathematics, Minimum Clique Covering
- Eric Weisstein's World of Mathematics, Minimum Edge Cover
- Eric Weisstein's World of Mathematics, Perfect Matching
Extensions
a(6) from Per H. Lundow, Jul 15 1996
a(7) from N. J. A. Sloane, Jan 01 2013
Comments