cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045344 Primes congruent to {1, 2} mod 3.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
Offset: 1

Views

Author

Keywords

Comments

Same as A045319, except for the 2nd term. - R. J. Mathar, Jan 30 2009
Primes of the form 3*n-+1. - Juri-Stepan Gerasimov, Jan 22 2010
Primes excluding 3. - Juri-Stepan Gerasimov, Apr 20 2010
Primes p such that p^2 + 2 is composite. 3 is the only prime p such that p^2 + 2 (= 11) is prime. All numbers p^2 + 2 for primes p = 2 and p > 3 are divisible by 3. - Jaroslav Krizek, Nov 25 2013
Primes p satisfying the equation gcd(sigma(p-1), p) = 1. - Lechoslaw Ratajczak, Aug 18 2018

Crossrefs

Programs

Formula

a(n) = A000040(A065475(n)). - Reinhard Zumkeller, Dec 17 2009

A045337 Primes congruent to {1, 2, 3, 4} (mod 7).

Original entry on oeis.org

2, 3, 11, 17, 23, 29, 31, 37, 43, 53, 59, 67, 71, 73, 79, 101, 107, 109, 113, 127, 137, 149, 151, 157, 163, 179, 191, 193, 197, 199, 211, 227, 233, 239, 241, 263, 269, 277, 281, 283, 311, 317, 331, 337, 347, 353
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(400) | p mod 7 in [1, 2, 3, 4]]; // Vincenzo Librandi, Aug 08 2012
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{1,2,3,4},Mod[#,7]]&] (* Vincenzo Librandi, Aug 08 2012 *)

A215302 Primes congruent to {1, 2, 3, 4} mod 11.

Original entry on oeis.org

2, 3, 13, 23, 37, 47, 59, 67, 79, 89, 101, 103, 113, 157, 167, 179, 191, 199, 211, 223, 233, 257, 277, 311, 331, 353, 367, 389, 397, 409, 419, 421, 431, 433, 443, 463, 487, 499, 509, 521, 541, 563, 587, 607, 617, 619, 631, 641, 653, 661, 673, 683, 719, 727
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 11 in [1..4]];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{1,2,3, 4},Mod[#,11]]&]

A215305 Primes congruent to {1, 2, 3, 4} mod 19.

Original entry on oeis.org

2, 3, 23, 41, 59, 61, 79, 97, 137, 173, 191, 193, 211, 229, 251, 269, 307, 383, 401, 419, 421, 439, 457, 479, 571, 593, 631, 647, 743, 761, 821, 839, 857, 859, 877, 953, 971, 991, 1009, 1049, 1087, 1103, 1123, 1163, 1181, 1201, 1217, 1237, 1277
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 19 in [1..4]];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{1,2,3, 4},Mod[#,19]]&]

A215303 Primes congruent to {1, 2, 3, 4} mod 13.

Original entry on oeis.org

2, 3, 17, 29, 41, 43, 53, 67, 79, 107, 131, 157, 173, 197, 199, 211, 223, 251, 263, 277, 313, 353, 367, 379, 419, 431, 433, 443, 457, 509, 521, 523, 547, 563, 587, 599, 601, 613, 641, 653, 677, 691, 719, 743, 757, 769, 797, 809, 821, 823, 859, 887, 911
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 13 in [1..4]];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{1,2,3, 4},Mod[#,13]]&]

A215304 Primes congruent to {1, 2, 3, 4} mod 17.

Original entry on oeis.org

2, 3, 19, 37, 53, 71, 89, 103, 137, 139, 157, 173, 191, 223, 239, 241, 257, 293, 307, 359, 409, 443, 461, 463, 479, 547, 563, 599, 613, 631, 647, 683, 701, 733, 751, 769, 853, 887, 919, 937, 953, 971, 1021, 1039, 1091, 1109, 1123, 1193, 1259, 1277
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 17 in [1..4]];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{1,2,3, 4},Mod[#,17]]&]
Showing 1-6 of 6 results.