cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A134517 Primes of the form 24*k - 1.

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Zak Seidov, Oct 29 2007

Keywords

Comments

Corresponding values of k are in A131210.
Is this the same sequence as A141376?
Primes in A183010. - Omar E. Pol, Oct 08 2011
Inert rational primes in the fields Q(sqrt(-1)), Q(sqrt(-2)), Q(sqrt(-3)). - Eyal Gruss, Nov 30 2022

Crossrefs

Intersection of A002145, A003627, A045355.

Programs

  • GAP
    Filtered(List([1..120],n->24*n-1),IsPrime); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    select(isprime,[seq(24*n-1,n=1..120)]); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    Select[Prime[Range[1000]],Mod[ #,24]==23&]
    Select[24*Range[200]-1,PrimeQ] (* Harvey P. Dale, Jun 17 2018 *)
  • PARI
    lista(nn) = for(k=1, nn, if(isprime(p=24*k-1), print1(p", "))) \\ Altug Alkan, Mar 04 2018

Formula

a(n) = A183010(A131210(n)). - Omar E. Pol, Nov 04 2017

A216776 Primes p such that x^62 = -2 has no solution mod p.

Original entry on oeis.org

5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 263, 269, 271, 277, 293, 311, 317, 349, 359, 367, 373, 383, 389, 397, 421, 431, 439, 461, 463, 479, 487, 503, 509, 541, 557, 599
Offset: 1

Views

Author

Vincenzo Librandi, Sep 16 2012

Keywords

Comments

Complement of A051100 relative to A000040.
a(n) = A045355(n+1) up to n=116, and then both sequences start to differ substantially. - R. J. Mathar, Sep 19 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(700) | not exists{x : x in ResidueClassRing(p) | x^62 eq -2} ];
  • Mathematica
    ok[p_]:=Reduce[Mod[x^62 + 2, p] == 0, x, Integers] == False;Select[Prime[Range[220]], ok]

A215210 Primes congruent to {2, 5, 7} mod 11.

Original entry on oeis.org

2, 5, 7, 13, 29, 71, 73, 79, 101, 137, 139, 167, 181, 211, 227, 233, 269, 271, 277, 293, 313, 337, 359, 379, 401, 409, 431, 467, 491, 541, 557, 563, 577, 599, 601, 607, 643, 673, 709, 733, 739, 761, 797, 821, 827, 863, 887, 907, 929, 937, 953, 997, 1019, 1039
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 11 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[800]],MemberQ[{2, 5, 7},Mod[#,11]]&]

A215211 Primes congruent to {2, 5, 7} mod 13.

Original entry on oeis.org

2, 5, 7, 31, 41, 59, 67, 83, 109, 137, 163, 197, 223, 239, 241, 293, 317, 353, 379, 397, 421, 431, 449, 457, 499, 509, 577, 587, 613, 631, 683, 691, 709, 733, 743, 761, 769, 787, 811, 821, 839, 863, 941, 967, 977, 1019, 1021, 1097, 1123, 1151, 1201, 1229, 1237
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 13 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,13]]&]
    Select[Flatten[Table[13n+{2,5,7},{n,0,100}]],PrimeQ] (* Harvey P. Dale, May 10 2021 *)

A215212 Primes congruent to {2, 5, 7} mod 17.

Original entry on oeis.org

2, 5, 7, 19, 41, 53, 73, 107, 109, 211, 223, 257, 277, 311, 313, 347, 359, 379, 449, 461, 563, 617, 619, 631, 653, 719, 733, 787, 821, 823, 857, 937, 971, 991, 1039, 1061, 1093, 1129, 1163, 1229, 1231, 1277, 1297, 1367, 1399, 1433, 1447, 1481, 1549, 1571
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 17 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,17]]&]

A215213 Primes congruent to {2, 5, 7} mod 19.

Original entry on oeis.org

2, 5, 7, 43, 59, 83, 97, 157, 173, 197, 211, 233, 271, 311, 347, 349, 401, 439, 461, 463, 499, 577, 613, 653, 691, 727, 743, 857, 881, 919, 971, 1009, 1031, 1033, 1069, 1109, 1123, 1223, 1237, 1259, 1297, 1373, 1427, 1451, 1487, 1489, 1579, 1601, 1693
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 19 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,19]]&]
Showing 1-6 of 6 results.