cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153502 Primes of the form 3*n^2 - 3*n + 11.

Original entry on oeis.org

11, 17, 29, 47, 71, 101, 137, 179, 227, 281, 479, 557, 641, 827, 929, 1151, 1667, 1811, 2447, 2621, 2801, 3581, 4007, 4229, 4457, 4691, 4931, 6221, 6779, 8597, 9587, 9929, 10631, 12107, 12491, 13679, 14087, 16217, 16661, 19937, 25127, 25679, 26237
Offset: 1

Views

Author

Vincenzo Librandi, Dec 28 2008

Keywords

Comments

Subsequence of A003627, A007528, A045371. - Bruno Berselli, Jul 16 2012
Also primes p such that (4*p-41)/3 is a square. - Bruno Berselli, Sep 14 2015

Crossrefs

Programs

  • Magma
    [a: n in [1..100] | IsPrime(a) where a is 3*n^2-3*n+11]; // Vincenzo Librandi, Jul 16 2012
    
  • Mathematica
    Select[Table[3 n^2 - 3 n + 11, {n, 1, 700}], PrimeQ] (* Vincenzo Librandi, Jul 16 2012 *)
  • PARI
    lista(nn) = for (n=1, nn, if (isprime(p=3*n^2-3*n+11), print1(p, ", "))) \\ Michel Marcus, Sep 14 2015

A241013 Semiprimes congruent to {1, 2, 4} mod 5.

Original entry on oeis.org

4, 6, 9, 14, 21, 22, 26, 34, 39, 46, 49, 51, 57, 62, 69, 74, 77, 82, 86, 87, 91, 94, 106, 111, 119, 121, 122, 129, 134, 141, 142, 146, 159, 161, 166, 169, 177, 187, 194, 201, 202, 206, 209, 214, 217, 219, 221, 226, 237, 247, 249, 254, 259, 262, 267, 274, 287, 289
Offset: 1

Views

Author

K. D. Bajpai, Aug 07 2014

Keywords

Comments

Semiprimes in A032793.

Examples

			21 = 3 * 7 which is semiprime and 21 = 1 mod 5.
39 = 3 * 13 which is semiprime and 39 = 4 mod 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeOmega[#] == 2 && MemberQ[{1, 2, 4}, Mod[#, 5]] &](* Bajpai *)
    Select[Complement[Range[100], 5Range[20] - 2, 5Range[20]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Aug 07 2014 *)
  • PARI
    for(n=1,10^4,if(n!=Mod(0,5)&&n!=Mod(3,5),if(bigomega(n)==2,print1(n,", ")))) \\ Derek Orr, Aug 07 2014

A269788 Primes p such that 2*p + 47 is a square.

Original entry on oeis.org

17, 37, 61, 89, 157, 197, 241, 397, 457, 521, 661, 1277, 1381, 1489, 1601, 2089, 2221, 2357, 2789, 3257, 3761, 4877, 5077, 5281, 5701, 6361, 7057, 7297, 7541, 7789, 8297, 8821, 10781, 11681, 12301, 13921, 15289, 15641, 17837, 18217, 19381, 19777, 20177, 21401
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2016

Keywords

Comments

Primes of the form 2*k^2 + 2*k - 23.

Crossrefs

Cf. A000040.
Subsequence of A002144, A045371.
Cf. similar sequences listed in A269784.

Programs

  • Magma
    [p: p in PrimesUpTo(50000) | IsSquare(2*p+47)];
    
  • Mathematica
    Select[Prime[Range[2500]], IntegerQ[Sqrt[2 # + 47]] &]
  • PARI
    lista(nn) = {forprime(p=2, nn, if(issquare(2*p + 47), print1(p, ", "))); } \\ Altug Alkan, Mar 24 2016

Formula

a(1) = 17 because 2*17 + 47 = 81, which is a square.
Showing 1-3 of 3 results.