cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A216057 a(n) = A045429(n) - A045356(n).

Original entry on oeis.org

1, 6, 6, 6, 12, 12, 6, 6, 2, 4, -6, -6, 4, -4, 4, 4, 14, 24, 24, 24, 24, 14, 14, 24, 6, 12, 12, 6, 2, 4, -24, -24, -26, -34, -18, -6, 6, 4, 12, 24, 22, 14, 4, 12, 6, 24, 24, 34, 24, 32, 16, 14, 24, 24, 26, 32, 34, 26, 34, 14, 14, 6, -18, -18, 6, 4, -6, -8, -14
Offset: 1

Views

Author

Zak Seidov, Aug 31 2012

Keywords

Crossrefs

A039703 a(n) = n-th prime modulo 5.

Original entry on oeis.org

2, 3, 0, 2, 1, 3, 2, 4, 3, 4, 1, 2, 1, 3, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 3, 2, 1, 2, 4, 4, 1, 2, 3, 2, 3, 4, 1, 1, 3, 2, 4, 1, 3, 2, 4, 3, 4, 1, 1, 2, 3, 4, 1, 2, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 4, 3, 4, 2, 3, 4, 3, 4, 2, 1, 4, 4, 1, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 2, 1, 4, 3, 4, 1, 3, 1, 2, 2, 3, 4, 1
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045356(n-1))) = even; a(A049084(A045429(n-1))) = odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (5/2)*n. - Amiram Eldar, Dec 11 2024

A020451 Primes that contain digits 1 and 3 only.

Original entry on oeis.org

3, 11, 13, 31, 113, 131, 311, 313, 331, 3313, 3331, 11113, 11131, 11311, 13313, 13331, 31333, 33113, 33311, 33331, 113111, 113131, 131111, 131113, 131311, 311111, 313133, 313331, 313333, 331333, 333131, 333331, 1111333, 1131113, 1131131, 1131133, 1131331
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A030096, A045429, and A032917.

Programs

  • Magma
    [p: p in PrimesUpTo(1131331) | Set(Intseq(p)) subset [1,3]]; // Bruno Berselli, Jul 27 2012
    
  • Maple
    N:= 8: # to get all a(n) with at most N digits
    S:= {}:
    for d from 1 to N do
      r:= (10^d-1)/9;
      S:= S union select(isprime,map(`+`,map(convert,combinat[powerset]
          ({seq(2*10^i,i=0..d-1)}),`+`),r));
    od:
    S; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(S,list)); # Robert Israel, May 04 2015
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{1,3},n],PrimeQ],{n,7}]] (* Vincenzo Librandi, Jul 27 2012 *)
  • Python
    from sympy import primerange
    def checkd(a, c):
        b =  set(int(i) for i in set(str(a)))
        return b.issubset(c)
    for n in primerange(2, 2000000):
        if checkd(n, [1, 3]):
            print(n)
    # Abhiram R Devesh, May 04 2015

A045356 Primes congruent to {0, 2, 4} mod 5.

Original entry on oeis.org

2, 5, 7, 17, 19, 29, 37, 47, 59, 67, 79, 89, 97, 107, 109, 127, 137, 139, 149, 157, 167, 179, 197, 199, 227, 229, 239, 257, 269, 277, 307, 317, 337, 347, 349, 359, 367, 379, 389, 397, 409, 419, 439, 449, 457, 467
Offset: 1

Views

Author

Keywords

Comments

A039703(A049084(a(n))) = even; complement of A045429. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 5 in {0, 2, 4} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[Prime[Range[400]], MemberQ[{0, 2, 4}, Mod[#, 5]] &] (* Vincenzo Librandi, Aug 07 2012 *)
    Select[Prime[Range[100]], EvenQ[Mod[#, 5]] &]  (* Zak Seidov, Aug 31 2012 *)
    Select[Flatten[#+{0,2,4}&/@(5*Range[0,100])],PrimeQ] (* Harvey P. Dale, Sep 14 2019 *)

A045415 Primes congruent to {1, 3, 5} mod 7.

Original entry on oeis.org

3, 5, 17, 19, 29, 31, 43, 47, 59, 61, 71, 73, 89, 101, 103, 113, 127, 131, 157, 173, 197, 199, 211, 227, 229, 239, 241, 257, 269, 271, 281, 283, 311, 313, 337, 353, 367, 379, 383, 397, 409, 421, 439, 449, 463, 467
Offset: 1

Views

Author

Keywords

Comments

A039705(A049084(a(n))) = odd; complement of A045370. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(600) | p mod 7 in {1,3,5} ]; // Vincenzo Librandi, Aug 12 2012
  • Mathematica
    Select[Prime[Range[100]],MemberQ[{1,3,5},Mod[#,7]]&] (* Harvey P. Dale, May 15 2011 *)

A137978 Primes congruent to {1, 3, 5, 7, 9} modulo 11.

Original entry on oeis.org

3, 5, 7, 23, 29, 31, 47, 53, 67, 71, 73, 89, 97, 113, 137, 139, 157, 163, 179, 181, 199, 223, 227, 229, 251, 269, 271, 293, 311, 313, 317, 331, 337, 353, 359, 379, 383, 397, 401, 419, 421, 443, 449, 463, 467, 487, 491, 509, 557, 577, 599, 601, 617, 619, 641
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2008

Keywords

Comments

A039709(A049084(a(n))) = odd; complement of A137977.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(740) | p mod 11 in {1, 3, 5, 7, 9} ] // Vincenzo Librandi, Jan 25 2011
  • Mathematica
    Select[Flatten[# + {1, 3, 5, 7, 9}&/@(11Range[0, 80])], PrimeQ] (* Harvey P. Dale, Jan 15 2011 *)

A259932 Primes whose anti-divisors sum to a prime.

Original entry on oeis.org

3, 5, 13, 41, 113, 761, 1201, 1741, 1861, 2113, 9661, 9941, 12641, 13613, 15313, 21841, 23981, 30013, 34061, 47741, 49613, 60901, 70313, 83641, 101701, 237361, 241513, 252761, 303421, 335381, 377581, 413141, 489061, 491041, 525313, 529421, 637321, 695021, 718801
Offset: 1

Views

Author

Paolo P. Lava, Jul 09 2015

Keywords

Comments

See A066272 for definition of anti-divisor.
Subsequence of A109350.
Apparently, apart from 5, all terms are congruent to {1, 3} mod 5 (see A045429).

Examples

			The anti-divisor of 3 is 2, which is prime.
The anti-divisors of 41 are 2, 3, 9, and 27, whose sum is 41, which is prime.
The anti-divisors of 9941 are 2, 3, 9, 47, 59, 141, 337, 423, 2209, and 6627, whose sum is 9857, which is prime.
		

Crossrefs

Programs

A269789 Primes p such that 2*p + 59 is a square.

Original entry on oeis.org

11, 31, 83, 151, 191, 283, 811, 983, 1171, 1483, 1831, 2083, 2351, 3251, 3583, 3931, 4111, 4483, 4871, 5483, 6131, 8291, 9631, 11071, 12611, 14251, 14591, 15991, 18211, 20983, 24391, 27583, 29983, 30971, 34031, 35083, 36151, 36691, 37783, 38891, 39451, 40583
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2016

Keywords

Comments

Primes of the form 2*k^2 + 2*k - 29.

Examples

			a(1) = 11 because 2*11 + 59 = 81, which is a square.
		

Crossrefs

Cf. A000040.
Subsequence of A002144, A045429.
Cf. similar sequences listed in A269784.

Programs

  • Magma
    [p: p in PrimesUpTo(50000) | IsSquare(2*p+59)];
    
  • Mathematica
    Select[Prime[Range[4500]], IntegerQ[Sqrt[2 # + 59]] &]
  • PARI
    lista(nn) = {forprime(p=2, nn, if(issquare(2*p + 59), print1(p, ", "))); } \\ Altug Alkan, Mar 24 2016

A212719 Numbers n with property that the subset A039703(1..n) contains equal numbers of odd and even terms.

Original entry on oeis.org

2, 6, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 44, 48, 54, 56, 58, 60, 70, 72, 74, 76, 84, 86, 90, 100, 122, 124, 128, 130, 132, 134, 136, 138, 142, 144, 192, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 234, 236, 238, 240, 254, 256, 258, 282, 284, 286
Offset: 1

Views

Author

Zak Seidov, Aug 29 2012

Keywords

Comments

It appears that the sequence is infinite and unbound.

Crossrefs

Cf. A045356 (primes congruent to {0,2,4} mod 5).
Cf. A045429 (primes congruent to {1,3} mod 5).
Showing 1-9 of 9 results.