cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045531 Number of sticky functions: endofunctions of [n] having a fixed point.

Original entry on oeis.org

1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of functions f{1,2,...,n}->{1,2,...,n} with at least one element mapped to 1. - Geoffrey Critzer, Dec 10 2012
Equivalently, a(n) is the number of endofunctions with minimum 1. - Olivier Gérard, Aug 02 2016
Number of bargraphs of width n and height n. Equivalently: number of ordered n-tuples of positive integers such that the largest is n. Example: a(3) = 19 because we have 113, 123, 213, 223, 131, 132, 231, 232, 311, 312, 321, 322, 331, 332, 313, 323, 133, 233, and 333. - Emeric Deutsch, Jan 30 2017

Crossrefs

Column |a(n, 2)| of A039621. Row sums of triangle A055858.
Column k=1 of A246049.

Programs

  • Magma
    [n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
  • Maxima
    a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
  • PARI
    a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
    

Formula

a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023