A045531 Number of sticky functions: endofunctions of [n] having a fixed point.
1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
Crossrefs
Programs
-
Magma
[n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
-
Mathematica
Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
-
Maxima
a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
-
PARI
a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
Formula
a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023
Comments