cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A036447 Double and reverse digits.

Original entry on oeis.org

1, 2, 4, 8, 61, 221, 244, 884, 8671, 24371, 24784, 86594, 881371, 2472671, 2435494, 8890784, 86518771, 245730371, 247064194, 883821494, 8892467671, 24353948771, 24579870784, 86514795194, 883095920371, 2470481916671, 2433383690494
Offset: 0

Views

Author

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a036447 n = a036447_list !! n
    a036447_list = iterate a004093 1  -- Reinhard Zumkeller, Feb 09 2012
  • Mathematica
    NestList[ FromDigits[ Reverse[ IntegerDigits[ 2# ] ] ] &, 1, 27 ]
    NestList[IntegerReverse[2#]&,1,30] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 18 2017 *)

Formula

a(n+1) = A004093(a(n)). - Reinhard Zumkeller, Feb 09 2012
Conjecture: a(n)^(1/n) tends to sqrt(10). - Vaclav Kotesovec, Jan 03 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 31 2000

A163632 Triple and reverse digits.

Original entry on oeis.org

1, 3, 9, 72, 612, 6381, 34191, 375201, 3065211, 3365919, 75779001, 300733722, 661102209, 7266033891, 37610189712, 631965038211, 3364115985981, 34975974329001, 300789229729401, 302881986763209, 726982069546809
Offset: 1

Views

Author

Dmitry Kamenetsky, Aug 02 2009

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    a[n_] := a[n] = If[n==1, 1, IntegerReverse[3a[n-1]]];
    Array[a, 40] (* Jean-François Alcover, Jan 01 2021 *)

Extensions

Offset changed from 0 to 1 by Vaclav Kotesovec, Jan 03 2020

A132064 Numbers multiplied by 4 and written backwards.

Original entry on oeis.org

1, 4, 61, 442, 8671, 48643, 275491, 4691011, 44046781, 421781671, 4866217861, 44417846491, 469583176771, 4807072338781, 42155398282291, 461921395126861, 4447050855867481, 42996432430288771, 480551127927589171, 4866530171154022291, 46198061648602166491
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007

Keywords

Examples

			a(4) = reverse(4*a(3)) = reverse(4*reverse(4*a(2))) = reverse(4*reverse(4*reverse(4*a(1)))) = reverse(4*reverse(4*4)) = reverse(4*61) = reverse(244) = 442
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A045539 (*5), A132078 (*6), A132114 (*7), A132113 (*8), A133361 (*9).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          (s-> parse(cat(s[-i]$i=1..length(s))))(""||(4*a(n-1))))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    NestList[IntegerReverse[4#]&,1,20] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Dec 09 2017 *)

Formula

a(n) = reverse(4*a(n-1)) where a(1) = 1
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

More terms from Alois P. Heinz, Apr 09 2015

A132078 Multiply previous term by 6 and reverse.

Original entry on oeis.org

1, 6, 63, 873, 8325, 5994, 46953, 817182, 2903094, 46581471, 628884972, 2389033773, 83620243341, 640064127105, 362674830483, 8982898406712, 27204409379835, 10972654622361, 66143772953856, 631327736268693, 8512167146697873, 83278108820037015, 90222029256866994
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007

Keywords

Examples

			a(4) = reverse(6 * a(3)) = reverse(6 * reverse(6 * a(2))) = reverse(6 * reverse( 6 * reverse(6 * a(1)))) = reverse(6 * reverse(6 * reverse(6))) = reverse(6 * 63) = 873.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132114 (*7), A132113 (*8), A133361 (*9).

Programs

  • Magma
    f:=func; a:=[1]; for n in [2..25] do Append(~a,f(a[n-1]));  end for; a; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    Nest[Append[#,IntegerReverse[6*#[[-1]]]]&,{1},22] (* James C. McMahon, Mar 03 2025 *)

Formula

a(n) = reverse(6 * a(n-1)) where a(1) = 1.

Extensions

Name clarified and terms a(16) and beyond from Andrew Howroyd, Jan 02 2020

A132113 Multiply previous term by 8 and reverse.

Original entry on oeis.org

1, 8, 46, 863, 4096, 86723, 487396, 8619983, 46895986, 888761573, 4852900117, 63900232883, 460368102115, 296184492863, 4092495749632, 65079956993723, 487949556936025, 28845546953093, 447426573467032, 6526377852149753
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007

Keywords

Examples

			a(4) = reverse(8 * a(3))
= reverse(8 * reverse(8 * a(2)))
= reverse(8 * reverse(8 * reverse(8 * a(1))))
= reverse(8 * reverse(8 * reverse(8)))
= reverse(8 * reverse(8 * 8))
= reverse(8 * 46)
= reverse(368)
= 863.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132114 (*7), A133361 (*9).

Programs

  • Maple
    rev:=proc(n) local nn: nn:=convert(n,base,10): add(nn[j]*10^(nops(nn)-j), j = 1..nops(nn)) end proc: a[1]:=1: for n from 2 to 20 do a[n]:=rev(8*a[n-1]) end do: seq(a[n],n=1..20); # Definition corrected by Emeric Deutsch, Nov 07 2007
  • Mathematica
    NestList[IntegerReverse[8#]&,1,20] (* Harvey P. Dale, Dec 22 2018 *)

Formula

a(n) = reverse(8 * a(n-1)) where a(1) = 1.
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

Definition corrected by Emeric Deutsch, Nov 07 2007
Edited by Jon E. Schoenfield, May 10 2019

A132114 Multiply previous term by 7 and reverse.

Original entry on oeis.org

1, 7, 94, 856, 2995, 56902, 413893, 1527982, 47859601, 702710533, 1373798194, 8537856169, 38139946795, 565726979662, 4367588800693, 15840612137503, 125269482488011, 770614773688678, 6470285143034935, 54544210069919254
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007

Keywords

Examples

			a(4) = reverse(7 * a(3)) = reverse(7 * reverse(7 * a(2))) = reverse(7 * reverse(7 * reverse(7 * a(1)))) = reverse(7 * reverse(7 * reverse(7))) = reverse(7*94) = 856.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132113 (*8), A133361 (*9).

Programs

  • Magma
    f:=func; a:=[1]; for n in [2..20] do Append(~a,f(a[n-1]));  end for; a; // Marius A. Burtea, Jan 03 2020
  • PARI
    seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=fromdigits(Vecrev(digits(a[n-1]*7)))); a} \\ Andrew Howroyd, Jan 02 2020
    

Formula

a(n) = reverse(7 * a(n-1)) with a(1) = 1.

Extensions

Name edited by Andrew Howroyd, Jan 02 2020

A133361 Multiply by 9 and reverse.

Original entry on oeis.org

1, 9, 18, 261, 9432, 88848, 236997, 3792312, 80803143, 782822727, 3454045407, 36680468013, 711212421033, 7929871190046, 41401704886317, 358679343516273, 7546461904118223, 70046073175181976, 487736675856414036, 4236277072800369834, 60582330255639462183
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 26 2007

Keywords

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132114 (*7), A132113 (*8).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          (s-> parse(cat(s[-i]$i=1..length(s))))(""||(9*a(n-1))))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    a[n_] := a[n] = If[n==1, 1, IntegerReverse[9a[n-1]]];
    a /@ Range[40] (* Jean-François Alcover, Jan 01 2021 *)

Formula

a(n) = reverse(9*a(n-1)) where a(1) = 1.
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

More terms from Alois P. Heinz, Apr 09 2015
Showing 1-7 of 7 results.