cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A096664 Numerators of terms in series expansion of sin(tan(x)).

Original entry on oeis.org

1, 1, -1, -55, -143, -968167, -7000033, -571772647, -843598411471, -1263845119891, -740683182137153, -474904166544135457, 2379183287545454197, 237037449673450822122569, 155015924346163216960553093, 50568039962561468889366023, 1801162678607996830733199407999, 2359789149102567189423591182268559
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			sin(tan(x)) = x + 1/6*x^3 - 1/40*x^5 - 55/1008*x^7 - 143/3456*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[Sin[Tan[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 17 2016 *)

A096671 Denominators of terms in series expansion of sin(tan(x)), odd powers only.

Original entry on oeis.org

1, 6, 40, 1008, 3456, 39916800, 566092800, 100590336000, 355687428096000, 1431118828339200, 2688996956405760000, 8617338912961658880000, 224800145555521536000000, 10888869450418352160768000000, 8841761993739701954543616000000, 4500732706172918893117440000000, 280107019961673757919941754880000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			x + (1/6)*x^3 - (1/40)*x^5 - (55/1008)*x^7 - (143/3456)*x^9 + ...
		

Crossrefs

A045688 Numerators of expansion of tan(sin(x)) - sin(tan(x)).

Original entry on oeis.org

0, 0, 0, 1, 29, 1913, 95, 311148869, 10193207, 1664108363, 2097555460001, 374694625074883, -48074332710505411, -4945837680716249285383, -2229960300928783674917, -24840355960694307625698893, -4153678459092607393588136503, -61444568105054860319920405585007, -335560999071136641584079760493377
Offset: 0

Views

Author

Keywords

Examples

			1/30*x^7 + 29/756*x^9 + 1913/75600*x^11 + O(x^12).
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Cf. A045689 (denominators), A096664, A096671, A096712, A096716.

Programs

  • Mathematica
    Plot[Tan[Sin[x]]-Sin[Tan[x]], {x, 0, π/2}]  (* Shows plot, which, as Bill Gosper and Neil Bickford remark, is ultraflat near 0 and has wild oscillations near Pi/2. - N. J. A. Sloane, Apr 11 2013 *)

A096718 Denominators of terms in series expansion of arcsin(arctan(x)).

Original entry on oeis.org

1, 6, 120, 5040, 362880, 4435200, 32947200, 145297152000, 69701632000, 13516122267648000, 5676771352412160000, 2872446304320552960000, 1723467782592331776000000, 1935799013407707050803200, 485144691014524112732160000, 1353553687930522274522726400000, 204193242064947360270857011200000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) = x - 1/6*x^3 + 13/120*x^5 - 341/5040*x^7 + 18649/362880*x^9 - 177761/4435200*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcSin[ArcTan[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 17 2016 *)

A096717 Numerators of terms in series expansion of arcsin(arctan(x)).

Original entry on oeis.org

1, -1, 13, -341, 18649, -177761, 1087433, -4043494549, 1674761567, -284891766539657, 106410874319325461, -48402125366670946877, 26344930021064765797249, -27048608191991004321089, 6237195766537863970288933, -16102066950215127630856787159, 2258820895862623437612519923989
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) = x - 1/6*x^3 + 13/120*x^5 - 341/5040*x^7 + 18649/362880*x^9 - 177761/4435200*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]], {x,0,50}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 17 2016 *)

A096719 Numerators of terms in series expansion of arctan(arcsin(x)).

Original entry on oeis.org

1, -1, 13, -173, 12409, -123379, 29518679, -889424791, 92273231203, 3836321172631, 22487012578592981, 2865860401219263691, 35970731592390474409, 277817773865257308429491, 1687365015862907602230599, 22415401434548677685890690591, 5789220720660809183499012532793, 2838956049184596030388390046497291
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arctan(arcsin(x)) = x - 1/6*x^3 + 13/120*x^5 - 173/5040*x^7 + 12409/362880*x^9 - 123379/13305600*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcTan[ArcSin[x]], {x,0,40}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 18 2016 *)
  • Maxima
    a(n):=b(2*n+1);
    b(n):=num(1/n*sum((1-(-1)^(m))*(-1)^((m-1)/2)*(1+(-1)^(n-m))/4*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+(1-(-1)^(n))/(2)*(-1)^((n-1)/2)/n); /* Vladimir Kruchinin, May 02 2011 */

Formula

a(n) = b(2*n+1), b(n) = numerator(1/n*sum(m=1..n-1, (1-(-1)^(m))*(-1)^((m-1)/2)*(1+(-1)^(n-m))/4*sum(k=1..n-m, (sum(j=1..k, binomial(k,j)*2^(1-j)* sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+(1-(-1)^(n))/(2)*(-1)^((n-1)/2)/n). - Vladimir Kruchinin, May 02 2011

A096720 Denominators of terms in series expansion of arctan(arcsin(x)).

Original entry on oeis.org

1, 6, 120, 5040, 362880, 13305600, 2075673600, 435891456000, 13173608448000, 13516122267648000, 5676771352412160000, 2872446304320552960000, 14243535393325056000000, 241974876675963381350400000, 949196134593634133606400000, 20303305318957834117840896000000, 4288058083363894565687997235200000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arctan(arcsin(x)) = x - 1/6*x^3 + 13/120*x^5 - 173/5040*x^7 + 12409/362880*x^9 - 123379/13305600*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcTan[ArcSin[x]],{x,0,40}],x] ,{2,-1,2}]] (* Harvey P. Dale, May 04 2013 *)

A096722 Denominators of terms in series expansion of arcsin(arctan(x)) - arctan(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 30, 756, 75600, 199584, 54486432000, 2421619200, 151227648000, 5913303492096000, 5203707073044480000, 512936840057241600000, 5041143264082570444800000, 1238175538546596249600000, 11695452372671563431936000000, 33500453776280426294437478400000, 44295044437526341433756221440000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			 arcsin(arctan(x)) - arctan(arcsin(x)) = -1/30*x^7 + 13/756*x^9 - 2329/75600*x^11 + 3749/199584*x^13 - 1405132357/54486432000*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 18 2016 *)

A096721 Numerators of terms in series expansion of arcsin(arctan(x)) - arctan(arcsin(x)).

Original entry on oeis.org

0, 0, 0, -1, 13, -2329, 3749, -1405132357, 41223659, -3230487913, 87420689313263, -92876785811395309, 6545378422138547141, -76226954122169434345117, 13717355610784766550119, -152042860419225571514252591, 325359516347299085987218014617, -501994552683503696983628163720749, 226141284010354023120430917899293
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) - arctan(arcsin(x)) = -1/30*x^7 + 13/756*x^9 - 2329/75600*x^11 + 3749/199584*x^13 - 1405132357/54486432000*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]],{x,0,nn}],x],{2,-1,2}]]] (* Harvey P. Dale, Dec 07 2011 *)

A096725 Numerators of terms in series expansion of (sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))).

Original entry on oeis.org

1, 5, 1313, -2773, -701933647, -86849082293, -174426488476171, -130176915706274917, -42426469007472079018663, -24495552034235134641205327, -3019410235003955483667737236843, -74265172933666226350348992663473, -2457268368880426576340457161112391, -589361165665450343618737576026916723726003
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			(sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))) = 1 + 5/3*x^2 + 1313/1890*x^4 - 2773/11907*x^6 - 701933647/1650310200*x^8 - 86849082293/270320810760*x^10 - ...
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[(Sin[Tan[x]] - Tan[Sin[x]]) / (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), {x,0,50}], x], {1, -1, 2}]] (* G. C. Greubel, Nov 20 2016 *)
Showing 1-10 of 11 results. Next