cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096717 Numerators of terms in series expansion of arcsin(arctan(x)).

Original entry on oeis.org

1, -1, 13, -341, 18649, -177761, 1087433, -4043494549, 1674761567, -284891766539657, 106410874319325461, -48402125366670946877, 26344930021064765797249, -27048608191991004321089, 6237195766537863970288933, -16102066950215127630856787159, 2258820895862623437612519923989
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) = x - 1/6*x^3 + 13/120*x^5 - 341/5040*x^7 + 18649/362880*x^9 - 177761/4435200*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]], {x,0,50}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 17 2016 *)

A096719 Numerators of terms in series expansion of arctan(arcsin(x)).

Original entry on oeis.org

1, -1, 13, -173, 12409, -123379, 29518679, -889424791, 92273231203, 3836321172631, 22487012578592981, 2865860401219263691, 35970731592390474409, 277817773865257308429491, 1687365015862907602230599, 22415401434548677685890690591, 5789220720660809183499012532793, 2838956049184596030388390046497291
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arctan(arcsin(x)) = x - 1/6*x^3 + 13/120*x^5 - 173/5040*x^7 + 12409/362880*x^9 - 123379/13305600*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcTan[ArcSin[x]], {x,0,40}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 18 2016 *)
  • Maxima
    a(n):=b(2*n+1);
    b(n):=num(1/n*sum((1-(-1)^(m))*(-1)^((m-1)/2)*(1+(-1)^(n-m))/4*sum((sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2)),j,1,k))*binomial(k+n-1,n-1),k,1,n-m),m,1,n-1)+(1-(-1)^(n))/(2)*(-1)^((n-1)/2)/n); /* Vladimir Kruchinin, May 02 2011 */

Formula

a(n) = b(2*n+1), b(n) = numerator(1/n*sum(m=1..n-1, (1-(-1)^(m))*(-1)^((m-1)/2)*(1+(-1)^(n-m))/4*sum(k=1..n-m, (sum(j=1..k, binomial(k,j)*2^(1-j)* sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+(1-(-1)^(n))/(2)*(-1)^((n-1)/2)/n). - Vladimir Kruchinin, May 02 2011

A096722 Denominators of terms in series expansion of arcsin(arctan(x)) - arctan(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 30, 756, 75600, 199584, 54486432000, 2421619200, 151227648000, 5913303492096000, 5203707073044480000, 512936840057241600000, 5041143264082570444800000, 1238175538546596249600000, 11695452372671563431936000000, 33500453776280426294437478400000, 44295044437526341433756221440000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			 arcsin(arctan(x)) - arctan(arcsin(x)) = -1/30*x^7 + 13/756*x^9 - 2329/75600*x^11 + 3749/199584*x^13 - 1405132357/54486432000*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 18 2016 *)

A096721 Numerators of terms in series expansion of arcsin(arctan(x)) - arctan(arcsin(x)).

Original entry on oeis.org

0, 0, 0, -1, 13, -2329, 3749, -1405132357, 41223659, -3230487913, 87420689313263, -92876785811395309, 6545378422138547141, -76226954122169434345117, 13717355610784766550119, -152042860419225571514252591, 325359516347299085987218014617, -501994552683503696983628163720749, 226141284010354023120430917899293
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) - arctan(arcsin(x)) = -1/30*x^7 + 13/756*x^9 - 2329/75600*x^11 + 3749/199584*x^13 - 1405132357/54486432000*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]],{x,0,nn}],x],{2,-1,2}]]] (* Harvey P. Dale, Dec 07 2011 *)

A096725 Numerators of terms in series expansion of (sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))).

Original entry on oeis.org

1, 5, 1313, -2773, -701933647, -86849082293, -174426488476171, -130176915706274917, -42426469007472079018663, -24495552034235134641205327, -3019410235003955483667737236843, -74265172933666226350348992663473, -2457268368880426576340457161112391, -589361165665450343618737576026916723726003
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			(sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))) = 1 + 5/3*x^2 + 1313/1890*x^4 - 2773/11907*x^6 - 701933647/1650310200*x^8 - 86849082293/270320810760*x^10 - ...
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[(Sin[Tan[x]] - Tan[Sin[x]]) / (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), {x,0,50}], x], {1, -1, 2}]] (* G. C. Greubel, Nov 20 2016 *)

A096730 Denominators of terms in series expansion of (sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))).

Original entry on oeis.org

1, 3, 1890, 11907, 1650310200, 270320810760, 851510553894000, 1003164583542521400, 480315202600159246320000, 393378150929530422736080000, 62700543476657854079903791200000, 1975067119514722403516969422800000, 76571832941186160874811737622400000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			(sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))) = 1 + 5/3*x^2 + 1313/1890*x^4 - 2773/11907*x^6 - 701933647/1650310200*x^8 - 86849082293/270320810760*x^10 - ...
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[(Sin[Tan[x]] - Tan[Sin[x]]) / (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), {x, 0, 10}], x], {1, -1, 2}]] (* G. C. Greubel, Nov 20 2016 *)

A296677 Expansion of e.g.f. arctan(arcsin(x)) (odd powers only).

Original entry on oeis.org

1, -1, 13, -173, 12409, -370137, 88556037, -2668274373, 2491377242481, 34526890553679, 202383113207336829, 25792743610973373219, 39172126704113226631401, 12501799823936578879327095, 15717805122762984314778029685, 9078237580992214462785729689355
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Examples

			arctan(arcsin(x)) = x/1! - x^3/3! + 13*x^5/5! - 173*x^7/7! + 12409*x^9/9! - 370137*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTan[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 16; Table[(CoefficientList[Series[(I/2) Log[1 - Log[I x + Sqrt[1 - x^2]]] - (I/2) Log[1 + Log[I x + Sqrt[1 - x^2]]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: (i/2)*log(1 - log(i*x + sqrt(1 - x^2))) - (i/2)*log(1 + log(i*x + sqrt(1 - x^2))), where i is the imaginary unit (odd powers only).
Showing 1-7 of 7 results.