cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A045784 Squares with initial digit '1'.

Original entry on oeis.org

1, 16, 100, 121, 144, 169, 196, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 10000, 10201, 10404, 10609, 10816, 11025, 11236, 11449, 11664, 11881, 12100, 12321, 12544, 12769, 12996, 13225, 13456, 13689, 13924
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[120]^2,First[IntegerDigits[#]]==1&] (* Harvey P. Dale, Dec 31 2011 *)

Formula

a(n) = A045855(n)^2. - Michel Marcus, Sep 04 2021

A045788 Squares with initial digit '5'.

Original entry on oeis.org

529, 576, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 50176, 50625, 51076, 51529, 51984, 52441, 52900, 53361, 53824, 54289, 54756, 55225, 55696, 56169, 56644, 57121, 57600, 58081, 58564, 59049, 59536, 501264, 502681, 504100, 505521
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(op(map(`^`, [seq(i,i=ceil(sqrt(5*10^d))..floor(sqrt(6*10^d-1)))],2)),d=1..5); # Robert Israel, Sep 30 2016
  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[5 10^n]],Floor[Sqrt[6 10^n]]]^2,{n,5}]]  (* Harvey P. Dale, Jun 15 2011 *)

Formula

a(n) = A045859(n)^2. - R. J. Mathar, Jul 23 2025

Extensions

Offset changed by Robert Israel, Sep 30 2016

A045787 Squares with initial digit '4'.

Original entry on oeis.org

4, 49, 400, 441, 484, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 40000, 40401, 40804, 41209, 41616, 42025, 42436, 42849, 43264, 43681, 44100, 44521, 44944, 45369, 45796, 46225, 46656, 47089, 47524, 47961, 48400, 48841, 49284, 49729, 400689
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[4 10^n]],Floor[Sqrt[5 10^n]]]^2, {n,5}]] (* Harvey P. Dale, Jun 15 2011 *)

Formula

a(n) = A045858(n)^2. - Michel Marcus, Sep 04 2021

A045785 Squares with initial digit '2'.

Original entry on oeis.org

25, 225, 256, 289, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 20164, 20449, 20736, 21025, 21316, 21609, 21904, 22201, 22500, 22801, 23104, 23409, 23716, 24025, 24336, 24649, 24964, 25281, 25600, 25921, 26244, 26569
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[2 10^n]],Floor[Sqrt[3 10^n]]]^2,{n,4}]](* Harvey P. Dale, Jun 15 2011 *)

Formula

a(n) = A045856(n)^2. - Michel Marcus, Sep 04 2021

A045786 Squares with initial digit '3'.

Original entry on oeis.org

36, 324, 361, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 30276, 30625, 30976, 31329, 31684, 32041, 32400, 32761, 33124, 33489, 33856, 34225, 34596, 34969, 35344, 35721, 36100, 36481, 36864, 37249, 37636, 38025, 38416, 38809
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200]^2,First[IntegerDigits[#]]==3&]  (* Harvey P. Dale, Apr 21 2011 *)

Formula

a(n) = A045857(n)^2. - Michel Marcus, Sep 04 2021

A045791 Squares with initial digit '7'.

Original entry on oeis.org

729, 784, 7056, 7225, 7396, 7569, 7744, 7921, 70225, 70756, 71289, 71824, 72361, 72900, 73441, 73984, 74529, 75076, 75625, 76176, 76729, 77284, 77841, 78400, 78961, 79524, 700569, 702244, 703921, 705600, 707281, 708964, 710649, 712336
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[7 10^n]],Floor[Sqrt[8 10^n]]]^2,{n,5}]] (* Harvey P. Dale, Jun 15 2011 *)

Formula

a(n) = A045861(n)^2. - Michel Marcus, Sep 04 2021

A045792 Squares with initial digit '8'.

Original entry on oeis.org

81, 841, 8100, 8281, 8464, 8649, 8836, 80089, 80656, 81225, 81796, 82369, 82944, 83521, 84100, 84681, 85264, 85849, 86436, 87025, 87616, 88209, 88804, 89401, 801025, 802816, 804609, 806404, 808201, 810000, 811801, 813604, 815409, 817216
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A045862(n)^2. - Michel Marcus, Sep 04 2021

Extensions

a(16) corrected by Sean A. Irvine, Mar 21 2021
Offset 1 from Michel Marcus, Mar 22 2021

A045793 Squares with initial digit '9'.

Original entry on oeis.org

9, 900, 961, 9025, 9216, 9409, 9604, 9801, 90000, 90601, 91204, 91809, 92416, 93025, 93636, 94249, 94864, 95481, 96100, 96721, 97344, 97969, 98596, 99225, 99856, 900601, 902500, 904401, 906304, 908209, 910116, 912025, 913936, 915849
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000]^2,First[IntegerDigits[#]]==9&] (* Harvey P. Dale, Apr 21 2015 *)

Formula

a(n) = A045863(n)^2. - Michel Marcus, Sep 04 2021

A045860 Numbers whose square has initial digit '6'.

Original entry on oeis.org

8, 25, 26, 78, 79, 80, 81, 82, 83, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799
Offset: 1

Views

Author

Keywords

Crossrefs

Supersequence of A035073.
Cf. A045789.

Programs

  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[6*10^n]],Floor[Sqrt[7*10^n]]],{n,5}]] (* Harvey P. Dale, Apr 03 2013 *)
  • Python
    from math import isqrt
    def aupto(limit):
        alst, d, end = [], 1, 0
        while end < limit:
            start, end = isqrt(6*10**d) + 1, isqrt(7*10**d-1)
            alst.extend([an for an in list(range(start, end+1)) if an <= limit])
            d += 1
        return alst
    print(aupto(799)) # Michael S. Branicky, Aug 25 2021

A348490 Positive numbers whose square starts and ends with exactly one 6.

Original entry on oeis.org

26, 246, 254, 256, 264, 776, 784, 786, 794, 796, 804, 806, 824, 826, 834, 836, 2454, 2456, 2464, 2466, 2474, 2476, 2484, 2486, 2494, 2496, 2504, 2506, 2514, 2516, 2524, 2526, 2534, 2536, 2544, 2546, 2554, 2556, 2564, 2566, 2594, 2596, 2604, 2606, 2614, 2616, 2624, 2626, 2634, 2636, 2644, 7746
Offset: 1

Views

Author

Bernard Schott, Oct 29 2021

Keywords

Comments

When a square ends with 6, it ends with only one 6.
From Marius A. Burtea, Oct 30 2021 : (Start)
The sequence is infinite because the numbers 806, 8006, 80006, ..., 8*10^k + 6, k >= 2, are terms with squares 649636, 64096036, 6400960036, 640009600036, ..., 64*10^(2*k) + 96*10^k + 36, k >= 2.
Numbers 796, 7996, 79996, 799996, 7999996, 79999996, ..., 10^k*8 - 4, k >= 2, are terms and have no digits 0, because their squares are 633616, 63936016, 6399360016, 639993600016, 63999936000016, 6399999360000016, ....
Also 794, 7994, 79994, 799994, ..., (8*10^k - 6), k >= 2, are terms and have no digits 0, because their squares are 630436, 63904036, 6399040036, 639990400036, 63999904000036, 6399999040000036, ... (End)

Examples

			26^2 = 676, hence 26 is a term.
814^2 = 662596, hence 814 is not a term.
		

Crossrefs

Cf. A045789, A045860, A273373 (squares ending with 6).
Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), this sequence (k=6), A348491 (k=9).
Subsequence of A305719.

Programs

  • Magma
    [n:n in [4..7500]|Intseq(n*n)[1] eq 6 and Intseq(n*n)[#Intseq(n*n)] eq 6 and Intseq(n*n)[-1+#Intseq(n*n)] ne 6 ]; // Marius A. Burtea, Oct 30 2021
  • Mathematica
    Select[Range[10, 7750], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 6 && d[[2]] != 6 &] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==6) && (d[#d]==6) && if (#d>2, (d[2]!=6) && (d[#d-1]!=6), 1); \\ Michel Marcus, Oct 30 2021
    
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("6")) == len(s.lstrip("6")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [4, 6]))
      return [k for k in r if ok(k)]
    print(aupto(2644)) # Michael S. Branicky, Oct 29 2021
    
Showing 1-10 of 12 results. Next