cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045945 Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).

Original entry on oeis.org

0, 12, 42, 90, 156, 240, 342, 462, 600, 756, 930, 1122, 1332, 1560, 1806, 2070, 2352, 2652, 2970, 3306, 3660, 4032, 4422, 4830, 5256, 5700, 6162, 6642, 7140, 7656, 8190, 8742, 9312, 9900, 10506, 11130, 11772, 12432, 13110, 13806, 14520, 15252, 16002, 16770, 17556
Offset: 0

Views

Author

Keywords

Comments

This may also be construed as the number of line segments illustrating the isometric projection of a cube of side length n. Moreover, a(n) equals the number of rods making a cube of side length n+1 minus the number of rods making a cube of side length n. See the illustration in the links and formula below.

Crossrefs

The hexagon matchstick sequences are: Number of matchsticks: this sequence; size=1 triangles: A033581; larger triangles: A307253; total triangles: A045949. Analog for triangles: A045943; analog for stars: A045946. - John King, Apr 05 2019

Programs

Formula

a(n) = a(n-1) + 6*(3*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
G.f.: 6*x*(2+x)/(1-x)^3. - Colin Barker, Feb 12 2012
a(n) = 6*A005449(n). - R. J. Mathar, Feb 13 2016
a(n) = A059986(n) - A059986(n-1). - Peter M. Chema, Feb 26 2017
a(n) = 6*(A000217(n) + A000290(n)). - Peter M. Chema, Mar 26 2017
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi/(6*sqrt(3)) - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = -1 + Pi/(3*sqrt(3)) + 2*log(2)/3. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: 3*exp(x)*x*(4 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)