cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045947 Triangles in open triangular matchstick arrangement (triangle minus one side) of side n.

Original entry on oeis.org

0, 0, 2, 7, 17, 33, 57, 90, 134, 190, 260, 345, 447, 567, 707, 868, 1052, 1260, 1494, 1755, 2045, 2365, 2717, 3102, 3522, 3978, 4472, 5005, 5579, 6195, 6855, 7560, 8312, 9112, 9962, 10863, 11817, 12825, 13889, 15010, 16190, 17430, 18732, 20097, 21527
Offset: 0

Views

Author

Keywords

Crossrefs

First differences of A082289.

Programs

  • Magma
    [Floor((4*n^3+2*n^2-4*n)/16): n in [0..50]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 17}, 45] (* Jean-François Alcover, Dec 12 2016 *)
    CoefficientList[Series[(2x^2+x^3)/((1-x)^3(1-x^2)),{x,0,50}],x] (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    a(n)=(4*n^3+2*n^2-4*n)\16
    

Formula

G.f.: (2*x^2+x^3)/((1-x)^3*(1-x^2)). - Michael Somos
a(n) = (1/16)*(2*n*(2*n^2+n-2)+(-1)^n-1). - Bruno Berselli, Aug 29 2011
a(2*n) = A000447(n)+A002412(n); a(2*n+1) = A051895(n). - J. M. Bergot, Apr 12 2018
E.g.f.: (x*(1 + 7*x + 2*x^2)*cosh(x) - (1 - x - 7*x^2 - 2*x^3)*sinh(x))/8. - Stefano Spezia, Aug 22 2023