cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046101 Biquadrateful numbers.

Original entry on oeis.org

16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704
Offset: 1

Views

Author

Keywords

Comments

The convention in the OEIS is that squareful, cubeful (A046099), biquadrateful, ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008
Also solutions to equation tau_{-3}(n)=0, where tau_{-3} is A007428. - Enrique Pérez Herrero, Jan 19 2013
Sum_{n>0} 1/a(n)^s = Zeta(s) - Zeta(s)/Zeta(4s). - Enrique Pérez Herrero, Jan 21 2013
A051903(a(n)) > 3. - Reinhard Zumkeller, Sep 03 2015
The asymptotic density of this sequence is 1 - 1/zeta(4) = 1 - 90/Pi^4 = 0.076061... - Amiram Eldar, Jul 09 2020

Crossrefs

Programs

  • Haskell
    a046101 n = a046101_list !! (n-1)
    a046101_list = filter ((> 3) . a051903) [1..]
    -- Reinhard Zumkeller, Sep 03 2015
    
  • Maple
    with(NumberTheory):
    isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1):
    select(isBiquadrateful, [`$`(1..704)]);  # Peter Luschny, Jul 12 2022
  • Mathematica
    lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
    Select[Range[1000],Max[Transpose[FactorInteger[#]][[2]]]>3&] (* Harvey P. Dale, May 25 2014 *)
  • PARI
    is(n)=n>9 && vecmax(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from sympy import mobius, integer_nthroot
    def A046101(n):
        def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024