A046101 Biquadrateful numbers.
16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Biquadratefree.
Programs
-
Haskell
a046101 n = a046101_list !! (n-1) a046101_list = filter ((> 3) . a051903) [1..] -- Reinhard Zumkeller, Sep 03 2015
-
Maple
with(NumberTheory): isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1): select(isBiquadrateful, [`$`(1..704)]); # Peter Luschny, Jul 12 2022
-
Mathematica
lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *) Select[Range[1000],Max[Transpose[FactorInteger[#]][[2]]]>3&] (* Harvey P. Dale, May 25 2014 *)
-
PARI
is(n)=n>9 && vecmax(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 03 2015
-
Python
from sympy import mobius, integer_nthroot def A046101(n): def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
Comments