cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A007947 Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Multiplicative with a(p^e) = p.
Product of the distinct prime factors of n.
a(k)=k for k=squarefree numbers A005117. - Lekraj Beedassy, Sep 05 2006
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), b*c = A019554(n) = "outer square root" of n, and a(n) = lcm(a(b),c). Unless n is biquadrateful (A046101), a(n) = lcm(b,c). [Edited by Jeppe Stig Nielsen, Oct 10 2021, and Andrey Zabolotskiy, Feb 12 2025]
a(n) = A128651(A129132(n-1) + 2) for n > 1. - Reinhard Zumkeller, Mar 30 2007
Also the least common multiple of the prime factors of n. - Peter Luschny, Mar 22 2011
The Mobius transform of the sequence generates the sequence of absolute values of A097945. - R. J. Mathar, Apr 04 2011
Appears to be the period length of k^n mod n. For example, n^12 mod 12 has period 6, repeating 1,4,9,4,1,0, so a(12)= 6. - Gary Detlefs, Apr 14 2013
a(n) differs from A014963(n) when n is a term of A024619. - Eric Desbiaux, Mar 24 2014
a(n) is also the smallest base (also termed radix) for which the representation of 1/n is of finite length. For example a(12) = 6 and 1/12 in base 6 is 0.03, which is of finite length. - Lee A. Newberg, Jul 27 2016
a(n) is also the divisor k of n such that d(k) = 2^omega(n). a(n) is also the smallest divisor u of n such that n divides u^n. - Juri-Stepan Gerasimov, Apr 06 2017

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

See A007913, A062953, A000188, A019554, A003557, A066503, A087207 for other properties related to square and squarefree divisors of n.
More general factorization-related properties, specific to n: A020639, A028234, A020500, A010051, A284318, A000005, A001221, A005361, A034444, A014963, A128651, A267116.
Range of values is A005117.
Bisections: A099984, A099985.
Sequences about numbers that have the same squarefree kernel: A065642, array A284311 (A284457).
A003961, A059896 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a007947 = product . a027748_row  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
    
  • Maple
    with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
    A007947 := n -> ilcm(op(numtheory[factorset](n))):
    seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
    A:= n -> convert(numtheory:-factorset(n),`*`):
    seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
    seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
    Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
    Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from sympy import primefactors, prod
    def a(n): return 1 if n < 2 else prod(primefactors(n))
    [a(n) for n in range(1, 51)]  # Indranil Ghosh, Apr 16 2017
    
  • Sage
    def A007947(n): return mul(p for p in prime_divisors(n))
    [A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
    
  • Scheme
    (define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017

Formula

If n = Product_j (p_j^k_j) where p_j are distinct primes, then a(n) = Product_j (p_j).
a(n) = Product_{k=1..A001221(n)} A027748(n,k). - Reinhard Zumkeller, Aug 27 2011
Dirichlet g.f.: zeta(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jan 21 2012
a(n) = Sum_{d|n} phi(d) * mu(d)^2 = Sum_{d|n} |A097945(d)|. - Enrique Pérez Herrero, Apr 23 2012
a(n) = Product_{d|n} d^moebius(n/d) (see Billal link). - Michel Marcus, Jan 06 2015
a(n) = n/( Sum_{k=1..n} (floor(k^n/n)-floor((k^n - 1)/n)) ) = e^(Sum_{k=2..n} (floor(n/k) - floor((n-1)/k))*A010051(k)*M(k)) where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
a(n) = n/A003557(n). - Juri-Stepan Gerasimov, Apr 07 2017
G.f.: Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
From Antti Karttunen, Jun 18 2017: (Start)
a(1) = 1; for n > 1, a(n) = A020639(n) * a(A028234(n)).
a(n) = A019565(A087207(n)). (End)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)). - Vaclav Kotesovec, Dec 18 2019
From Peter Munn, Jan 01 2020: (Start)
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A003961(n)) = A003961(a(n)).
a(n^2) = a(n).
a(A225546(n)) = A019565(A267116(n)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463/2. - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)).
For n>1, Sum_{k=1..n} a(gcd(n,k))*mu(a(gcd(n,k)))*phi(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*mu(a(n/gcd(n,k)))*phi(gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*psi(d), where omega = A001221 and psi = A001615. - Ridouane Oudra, Aug 01 2025

Extensions

More terms from several people including David W. Wilson
Definition expanded by Jonathan Sondow, Apr 26 2013

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A046099 Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336
Offset: 1

Views

Author

Keywords

Comments

Also called cubeful numbers, but this term is ambiguous and is best avoided.
Numbers n such that A007427(n) = sum(d|n,mu(d)*mu(n/d)) == 0. - Benoit Cloitre, Apr 17 2002
The convention in the OEIS is that squareful, cubeful, biquadrateful (A046101), ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008. Added by N. J. A. Sloane, Apr 25 2023: This suggestion has not been a success. It is hopeless to try to make a distinction between "cubeful" and "cubefull". To avoid ambiguity, do not use either term, but instead say exactly what you mean.
Also solutions to equation tau_{-2}(n)=0, where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
The asymptotic density of this sequence is 1 - 1/zeta(3) = 0.168092... - Amiram Eldar, Jul 09 2020

Crossrefs

Complement of A004709.
Subsequences: A000578 and A030078.

Programs

  • Haskell
    a046099 n = a046099_list !! (n-1)
    a046099_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA046099 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) >= 3 then
                return true;
            end if;
        end do:
        false ;
    end proc:
    for n from 1 do
        if isA046099(n) then
            printf("%d\n",n) ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
  • Mathematica
    lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>2, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
  • PARI
    is(n)=n>7 && vecmax(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) != n
    print(list(filter(ok, range(1, 337)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A046099(n):
        def f(x): return n+sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A212793(a(n)) = 0. - Reinhard Zumkeller, May 27 2012
Sum_{n>=1} 1/a(n)^s = (zeta(s)*(zeta(3*s)-1))/zeta(3*s). - Amiram Eldar, Dec 27 2022

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008
Edited by N. J. A. Sloane, Jul 27 2009

A046100 Biquadratefree numbers: numbers that are not divisible by any 4th power greater than 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Keywords

Comments

Differs from A023809 at entries 0, 81, 162, 225, 226, etc. - R. J. Mathar, Oct 18 2008
Density is 1/zeta(4) = A215267 = 0.923938.... - Charles R Greathouse IV, Sep 02 2015
The Schnirelmann density of the biquadratefree numbers is 145/157 (Orr, 1969). - Amiram Eldar, Mar 12 2021
This sequence has arbitrarily large gaps and hence is not a Beatty sequence. - Charles R Greathouse IV, Jan 27 2022

Crossrefs

Cf. A046101, A005117 (2-free), A004709 (3-free).
Subsequence of A209061.

Programs

  • Haskell
    a046100 n = a046100_list !! (n-1)
    a046100_list = filter ((< 4) . a051903) [1..]
    -- Reinhard Zumkeller, Sep 03 2015
    
  • Maple
    A046100 := proc(n)
        option remember;
        local a,p,is4free;
        if n = 1 then
            return 1;
        else
            for a from procname(n-1)+1 do
                is4free := true ;
                for p in ifactors(a)[2] do
                    if op(2,p) >= 4 then
                        is4free := false;
                        break;
                    end if;
                end do:
                if is4free then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Aug 08 2012
  • Mathematica
    lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>4, a=1], {n, Length[FactorInteger[m]]}];If[a!=1, AppendTo[lst, m]], {m, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
    Select[Range[100],Max[FactorInteger[#][[;;,2]]]<4&] (* Harvey P. Dale, Jul 13 2023 *)
  • PARI
    is(n)=n==1 || vecmax(factor(n)[,2])<4 \\ Charles R Greathouse IV, Jun 16 2012
    
  • Python
    from sympy import mobius, integer_nthroot
    def A046100(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024
  • Sage
    def is_biquadratefree(n):
        return all(c[1] < 4 for c in n.factor())
    def A046100_list(n): return [i for i in (1..n) if is_biquadratefree(i)]
    A046100_list(76) # Peter Luschny, Aug 08 2012
    

Formula

A051903(a(n)) < 4. - Reinhard Zumkeller, Sep 03 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(4*s), for s > 1. - Amiram Eldar, Dec 27 2022

Extensions

Name edited by Amiram Eldar, Jul 29 2024

A036967 4-full numbers: if a prime p divides k then so does p^4.

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992
Offset: 1

Views

Author

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258601(n); a(A258601(n)) = A030514(n) = prime(n)^4. - Reinhard Zumkeller, Jun 06 2015

References

  • E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

Crossrefs

A030514 is a subsequence.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a036967 n = a036967_list !! (n-1)
    a036967_list = 1 : f (singleton z) [1, z] zs where
       f s q4s p4s'@(p4:p4s)
         | m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s'
         | otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030514_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[35000],Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    is(n)=n==1 || vecmin(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    M(v,u,lim)=vecsort(concat(vector(#v, i, my(m=lim\v[i]); v[i]*select(t->t<=m, u))))
    Gen(lim,k)={my(v=[1]); forprime(p=2, sqrtnint(lim, k), v=M(v, concat([1], vector(logint(lim,p)-k+1,e,p^(e+k-1))), lim));v}
    Gen(35000,4) \\ Andrew Howroyd, Sep 10 2024
    
  • Python
    from sympy import factorint
    A036967_list = [n for n in range(1,10**5) if min(factorint(n).values(),default=4) >= 4] # Chai Wah Wu, Aug 18 2021
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A036967(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for u in range(1,integer_nthroot(x,7)[0]+1):
                if all(d<=1 for d in factorint(u).values()):
                    for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1):
                        if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                            for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                                if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                    c -= integer_nthroot(z//y**5,4)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.1488462139214317030108176090790939019972506733993367867997411290952527... - Amiram Eldar, Jul 09 2020

Extensions

More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002

A007428 Moebius transform applied thrice to sequence 1,0,0,0,....

Original entry on oeis.org

1, -3, -3, 3, -3, 9, -3, -1, 3, 9, -3, -9, -3, 9, 9, 0, -3, -9, -3, -9, 9, 9, -3, 3, 3, 9, -1, -9, -3, -27, -3, 0, 9, 9, 9, 9, -3, 9, 9, 3, -3, -27, -3, -9, -9, 9, -3, 0, 3, -9, 9, -9, -3, 3, 9, 3, 9, 9, -3, 27, -3, 9, -9, 0, 9, -27, -3, -9, 9, -27, -3, -3, -3, 9, -9, -9, 9, -27
Offset: 1

Views

Author

Keywords

Comments

Dirichlet inverse of A007425. - R. J. Mathar, Jul 15 2010
abs(a(n)) is the number of ways to write n=xyz where x,y,z are squarefree numbers. - Benoit Cloitre, Jan 02 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Consecutive nested Dirichlet convolution: A063524, A008683 or A007427. - Enrique Pérez Herrero, Jul 12 2010
Cf. A124010.

Programs

  • Haskell
    a007428 n = product
       [a007318' 3 e * cycle [1,-1] !! fromIntegral e | e <- a124010_row n]
    -- Reinhard Zumkeller, Oct 09 2013
    
  • Maple
    möbius := proc(a)  local b, i, mo: b := NULL:
    mo := (m,n) -> `if`(irem(m,n) = 0, numtheory:-mobius(m/n), 0);
    for i to nops(a) do b := b, add(mo(i,j)*a[j], j=1..i) od: [b] end:
    (möbius@@3)([1, seq(0, i=1..77)]); # Peter Luschny, Sep 08 2017
  • Mathematica
    tau[1,n_Integer]:=1; SetAttributes[tau, Listable];
    tau[k_Integer,n_Integer]:=Plus@@(tau[k-1,Divisors[n]])/; k > 1;
    tau[k_Integer,n_Integer]:=Plus@@(tau[k+1,Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1;
    A007428[n_]:=tau[ -3,n]; (* Enrique Pérez Herrero, Jul 12 2010 *)
    a[n_] := Which[n==1, 1, PrimeQ[n], -3, True, Times @@ Map[Function[e, Binomial[3, e] (-1)^e], FactorInteger[n][[All, 2]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 20 2018 *)
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, e = f[k,2]; f[k,1] = binomial(3, e)*(-1)^e; f[k,2] = 1); factorback(f);} \\ Michel Marcus, Jan 03 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (3 choose e) (-1)^e.
Dirichlet g.f.: 1/zeta(s)^3.
From Enrique Pérez Herrero, Jul 12 2010: (Start)
a(n^3) = A008683(n).
a(s) = (-3)^A001221(s) provided s is a squarefree number (A005117). (End)
a(A046101(n)) = 0. - Enrique Pérez Herrero, Sep 07 2017
a(n) = Sum_{a*b*c=n} mu(a)*mu(b)*mu(c). - Benedict W. J. Irwin, Mar 02 2022

A130897 Numbers that are not exponentially squarefree.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976
Offset: 1

Views

Author

Laszlo Toth, Mar 18 2011

Keywords

Comments

A positive integer is called exponentially squarefree (e-squarefree) if in its prime power factorization all the exponents are squarefree.
a(n) is the sequence of positive integers in which prime power factorization there is at least one nonsquarefree exponent.
n is non-e-squarefree iff f(n)=0, where f(n) is the exponential Moebius function A166234.
Product_{k = 1..A001221(n)} A008966(A124010(n,k)) = 0. - Reinhard Zumkeller, Mar 13 2012
The density of {a(n)} is 0.04407699... (see comment in A209061). - Peter J. C. Moses and Vladimir Shevelev, Sep 08 2015

Examples

			16=2^4, 48=2^4*3, 256=2^8 are non-e-squarefree, since 4 and 8 are nonsquarefree.
		

Crossrefs

Complement of A209061; subsequence of A013929, A046099, and A046101.

Programs

  • Haskell
    a130897 n = a130897_list !! (n-1)
    a130897_list = filter
       (any (== 0) . map (a008966 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    filter:=n ->  not andmap(t -> numtheory:-issqrfree(t[2]), ifactors(n)[2]);
    select(filter, [$1..1000]); # Robert Israel, Sep 03 2015
  • Mathematica
    Select[Range@ 1000, ! AllTrue[Last /@ FactorInteger@ #, SquareFreeQ] &] (* Michael De Vlieger, Sep 07 2015, Version 10 *)
  • PARI
    is(n)=my(f=factor(n)[, 2]); for(i=1, #f, if(!issquarefree(f[i]), return(1))); 0 \\ Charles R Greathouse IV, Sep 03 2015

A068782 Lesser of two consecutive numbers each divisible by a fourth power.

Original entry on oeis.org

80, 624, 1215, 1376, 2400, 2511, 2672, 3807, 3968, 4374, 5103, 5264, 6399, 6560, 7695, 7856, 8991, 9152, 9375, 10287, 10448, 10624, 11583, 11744, 12879, 13040, 14175, 14336, 14640, 15471, 15632, 16767, 16928, 18063, 18224, 19359, 19375
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(4) + Product_{p prime} (1 - 2/p^4) = 0.001856185541538432217... - Amiram Eldar, Feb 16 2021
Below 9508685764, it suffices to check for n such that either n or n+1 is divisible by p^4 for some p <= 19. - Charles R Greathouse IV, Jul 17 2024

Examples

			80 is a term as 80 and 81 both are divisible by a fourth power, 2^4 and 3^4 respectively.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 25000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 3 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 3 &]
  • PARI
    has(n)=vecmax(factor(n)[,2])>3
    is(n)=has(n+1)&&has(n) \\ Charles R Greathouse IV, Dec 19 2018
    
  • PARI
    list(lim)=my(v=List(),x=1); forfactored(n=81,lim\1+1, if(vecmax(n[2][,2])>3, if(x,listput(v,n[1]-1),x=1),x=0)); Vec(v) \\ Charles R Greathouse IV, Dec 19 2018

Extensions

a(0) = 0 removed by Charles R Greathouse IV, Dec 19 2018

A086709 Primes p such that p-1 and p+1 are both divisible by fourth powers.

Original entry on oeis.org

1249, 2753, 3727, 4049, 4801, 5023, 7937, 10529, 11503, 12799, 13121, 15391, 20897, 21871, 22193, 23167, 25759, 28351, 28751, 31249, 32561, 33857, 35153, 37423, 39041, 42929, 46817, 47791, 48751, 49409, 50383, 51679, 55889, 58481, 62047
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=4&&f[p+1]>=4,AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    dfpQ[n_]:=Max[Transpose[FactorInteger[n]][[2]]]>3; Select[Prime[Range[ 6500]], dfpQ[#-1]&&dfpQ[#+1]&] (* Harvey P. Dale, May 11 2012 *)

A365171 The number of divisors d of n such that gcd(d, n/d) is a square.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The sum of these divisors is A365172(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 3)/4] + Floor[(e + 4)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+3)\4 + (x+4)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1 - X)^2 * (1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e + 3)/4) + floor((e + 4)/4) = A004524(e+3).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034444(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) == 1 (mod 2) if and only if n is a fourth power (A000583).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2 + 1)) = Pi^2/15 = A182448,
f'(1) = f(1) * Sum_{p prime} 2*log(p) / (p^2 + 1) = f(1) * 0.8852429263675811068149340172820329246145172848406469350087715037483367369...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-10 of 24 results. Next