A068781
Lesser of two consecutive numbers each divisible by a square.
Original entry on oeis.org
8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1
44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
(4,8)
(9,12,16,18,20,24)
(25,27)
(28,32,36,40,44)
(45,48)
(49)
(50,52,54,56,60,63)
(64,68,72,75)
(76,80)
(81,84,88,90,92,96,98)
(99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
A053797 gives lengths of runs of nonsquarefree numbers, firsts
A373199.
-
a068781 n = a068781_list !! (n-1)
a068781_list = filter ((== 0) . a261869) [1..]
-- Reinhard Zumkeller, Sep 04 2015
-
Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
-
isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021
A068140
Smaller of two consecutive numbers each divisible by a cube greater than one.
Original entry on oeis.org
80, 135, 296, 343, 351, 375, 512, 567, 624, 728, 783, 944, 999, 1160, 1215, 1375, 1376, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2079, 2240, 2295, 2375, 2400, 2456, 2511, 2624, 2672, 2727, 2888, 2943, 3087, 3104, 3159, 3320, 3375, 3429, 3536, 3591
Offset: 1
343 is a term as 343 = 7^3 and 344= 2^3 * 43.
Cf.
A046099,
A063528,
A068781,
A068782,
A068783,
A068784,
A088453,
A122692,
A174113,
A340152,
A340153.
-
isA068140 := proc(n)
isA046099(n) and isA046099(n+1) ;
end proc:
for n from 1 to 4000 do
if isA068140(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Dec 08 2015
-
a = b = 0; Do[b = Max[ Transpose[ FactorInteger[n]] [[2]]]; If[a > 2 && b > 2, Print[n - 1]]; a = b, {n, 2, 5000}]
Select[Range[2, 6000], Max[Transpose[FactorInteger[ # ]][[2]]] > 2 && Max[Transpose[FactorInteger[ # + 1]][[2]]] > 2 &] (* Jonathan Vos Post, Sep 18 2007 *)
SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]],IntegerQ[Surd[#,3]]&],1,0],{n,3600}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2020 *)
A063528
Smallest number such that it and its successor are both divisible by an n-th power larger than 1.
Original entry on oeis.org
2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208, 2280241934368767, 2280241934368767, 2280241934368767
Offset: 1
a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.
-
k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
-
b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* Franklin T. Adams-Watters, May 27 2011 */
A068783
Lesser of two consecutive numbers each divisible by a fifth power.
Original entry on oeis.org
1215, 6560, 8991, 9375, 14336, 16767, 22112, 24543, 29888, 32319, 37664, 40095, 45440, 47871, 53216, 55647, 60992, 63423, 68768, 71199, 76544, 78975, 84320, 86751, 90624, 92096, 94527, 99872, 102303, 107648, 109375, 110079, 115424
Offset: 1
-
Select[ Range[2, 250000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 4 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 4 &]
SequencePosition[Table[If[Max[FactorInteger[n][[All,2]]]>4,1,0],{n,120000}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 25 2018 *)
A068784
Lesser of two consecutive numbers each divisible by a sixth power.
Original entry on oeis.org
16767, 29888, 63423, 76544, 109375, 110079, 123200, 156735, 169856, 203391, 216512, 250047, 263168, 296703, 309824, 343359, 356480, 390015, 403136, 436671, 449792, 483327, 496448, 529983, 543104, 576639, 589760, 623295, 636416, 669951
Offset: 1
A174113
Smallest number k such that k, k+1, and k+2 are all divisible by an n-th power.
Original entry on oeis.org
48, 1375, 33614, 2590623, 26890623, 2372890624, 70925781248, 2889212890624, 61938212890624, 4497636425781248, 8555081787109375, 2665760081787109375, 98325140081787109375, 198816740081787109374, 11776267480163574218750, 872710687480163574218750, 50783354512519836425781248
Offset: 2
a(3) = 1375 because
1375 = 11 * 5^3;
1376 = 172 * 2^3;
1377 = 51 * 3^3.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1375, p. 135, Ellipses, Paris 2008.
Cf.
A068780,
A068781,
A068140,
A068782,
A068783,
A068784,
A045330,
A059737,
A063528,
A051903,
A051903.
-
with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0:
for a from 0 to 2 do: ii:=0:for m from 1 to 4 while(ii=0) do:p:=ithprime(m)^n:if irem(k+a,p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
-
a(n)=my(ch,t,best=30^n);forprime(a=2, 29, forprime(b=2, 29, if(a==b,next); ch=chinese(Mod(0,a^n), Mod(-1,b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(tCharles R Greathouse IV, Jan 16 2012
Showing 1-6 of 6 results.
Comments