cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.

Original entry on oeis.org

2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208, 2280241934368767, 2280241934368767, 2280241934368767
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Lesser of the smallest pair of consecutive numbers divisible by an n-th power.
To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1).
One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - Franklin T. Adams-Watters, May 27 2011

Examples

			a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.

Crossrefs

We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1.

Programs

  • Mathematica
    k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
  • PARI
    b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
    a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* Franklin T. Adams-Watters, May 27 2011 */

Extensions

More terms from Jud McCranie, Aug 06 2001

A271443 Earliest start of a run of n numbers divisible by a cube larger than one.

Original entry on oeis.org

8, 80, 1375, 22624, 18035622, 4379776620, 1204244328624, 2604639091138248, 2604639091138248
Offset: 1

Views

Author

Giovanni Resta, Apr 23 2016

Keywords

Comments

a(5)-a(7) were found by Donovan Johnson.

Examples

			a(9) = 2604639091138248 and the following 8 numbers are divisible by 2^3, 11^3, 5^3, 17^3, 7^3, 13^3, 3^3, 19^3, and 2^4, respectively.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1, c=0}, While[ c
    				

A068782 Lesser of two consecutive numbers each divisible by a fourth power.

Original entry on oeis.org

80, 624, 1215, 1376, 2400, 2511, 2672, 3807, 3968, 4374, 5103, 5264, 6399, 6560, 7695, 7856, 8991, 9152, 9375, 10287, 10448, 10624, 11583, 11744, 12879, 13040, 14175, 14336, 14640, 15471, 15632, 16767, 16928, 18063, 18224, 19359, 19375
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(4) + Product_{p prime} (1 - 2/p^4) = 0.001856185541538432217... - Amiram Eldar, Feb 16 2021
Below 9508685764, it suffices to check for n such that either n or n+1 is divisible by p^4 for some p <= 19. - Charles R Greathouse IV, Jul 17 2024

Examples

			80 is a term as 80 and 81 both are divisible by a fourth power, 2^4 and 3^4 respectively.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 25000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 3 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 3 &]
  • PARI
    has(n)=vecmax(factor(n)[,2])>3
    is(n)=has(n+1)&&has(n) \\ Charles R Greathouse IV, Dec 19 2018
    
  • PARI
    list(lim)=my(v=List(),x=1); forfactored(n=81,lim\1+1, if(vecmax(n[2][,2])>3, if(x,listput(v,n[1]-1),x=1),x=0)); Vec(v) \\ Charles R Greathouse IV, Dec 19 2018

Extensions

a(0) = 0 removed by Charles R Greathouse IV, Dec 19 2018

A068783 Lesser of two consecutive numbers each divisible by a fifth power.

Original entry on oeis.org

1215, 6560, 8991, 9375, 14336, 16767, 22112, 24543, 29888, 32319, 37664, 40095, 45440, 47871, 53216, 55647, 60992, 63423, 68768, 71199, 76544, 78975, 84320, 86751, 90624, 92096, 94527, 99872, 102303, 107648, 109375, 110079, 115424
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(5) + Product_{p prime} (1 - 2/p^5) = 0.000284512101137896862... - Amiram Eldar, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 250000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 4 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 4 &]
    SequencePosition[Table[If[Max[FactorInteger[n][[All,2]]]>4,1,0],{n,120000}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 25 2018 *)

A068784 Lesser of two consecutive numbers each divisible by a sixth power.

Original entry on oeis.org

16767, 29888, 63423, 76544, 109375, 110079, 123200, 156735, 169856, 203391, 216512, 250047, 263168, 296703, 309824, 343359, 356480, 390015, 403136, 436671, 449792, 483327, 496448, 529983, 543104, 576639, 589760, 623295, 636416, 669951
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - 2/zeta(6) + Product_{p prime} (1 - 2/p^6) = 0.000045351901298014669... - Amiram Eldar, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    Select[ Range[2, 10^6], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 5 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 5 &]

A122692 Cubeful numbers whose neighbors are also cubeful.

Original entry on oeis.org

1376, 4375, 4913, 5751, 6859, 13311, 13376, 16120, 21249, 22625, 22626, 24353, 25624, 28376, 31375, 32751, 33615, 40473, 41743, 48249, 49625, 49735, 52624, 55376, 57968, 58375, 59751, 75249, 76625, 79624, 82376, 85375, 86751, 90208
Offset: 1

Views

Author

Tanya Khovanova, Oct 21 2006

Keywords

Comments

The asymptotic density of this sequence is 1 - 3/zeta(3) + 3 * Product_{p prime} (1 - 2/p^3) - Product_{p prime} (1 - 3/p^3) = 1 - 3 * A088453 + 3 * A340153 - Product_{p prime} (1 - 3/p^3) = 0.00038922120241968636455... . - Amiram Eldar, Sep 12 2024

Examples

			1376 is divisible by 8, and its neighbors 1375 and 1377 are divisible by 125 and 27, respectively.
		

Crossrefs

Subsequence of A046099 and A068140.

Programs

  • Maple
    N := 10^6: # get all terms <= N
    CF := {seq(seq(x^3 * y, y = 1..floor(N/x^3)), x = 2..floor(N^(1/3)))}:
    CF intersect map(`-`, CF, 1) intersect map(`+`, CF, 1): # Robert Israel, Jul 16 2014
  • Mathematica
    Select[Range[2, 100000], Max[Transpose[FactorInteger[ # ]][[2]]] >= 3 && Max[Transpose[FactorInteger[# + 1]][[2]]] >= 3 && Max[Transpose[FactorInteger[# - 1]][[2]]] >= 3 &]
    cnQ[{a_,b_,c_}] := And@@(# > 2 &/@{a, b, c}); Flatten[Position[Partition[Table[Max[Transpose[FactorInteger[n]][[2]]], {n, 91000}], 3, 1], ?(cnQ[#] &)]] + 1 (* _Harvey P. Dale, Jul 28 2013 *)
  • PARI
    iscubefree(n) = vecsort(factor(n)~, 2, 4)[2, 1] < 3
    s = []; for(n = 3, 200000, if(!iscubefree(n - 1) && !iscubefree(n) && !iscubefree(n + 1), s = concat(s, n))); s \\ Colin Barker, Jul 16 2014
    
  • PARI
    A051903(n)=if(n>1, vecmax(factor(n)[, 2]), 0)
    is(n)=A051903(n)>2 && A051903(n-1)>2 && A051903(n+1)>2 \\ Charles R Greathouse IV, Jul 23 2014

A176313 First of two consecutive numbers with at least one 3 in their prime signature.

Original entry on oeis.org

135, 296, 343, 375, 999, 1160, 1431, 1592, 1624, 2295, 2375, 2456, 2727, 2888, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4887, 4913, 5048, 5144, 5319, 5480, 5831, 6183, 6344, 6375, 6615, 6776, 6858, 6859, 7479, 7624, 7640, 7749, 7911, 8072, 8375, 8775, 8936, 9125, 9207, 9368, 9624, 10071, 10232, 10375, 10503, 10632, 10664, 10984, 11124, 11319, 11367, 11528, 11624, 11799, 11960
Offset: 1

Views

Author

Keywords

Examples

			135 is a term since 135 = 3^3 * 5 and 136 = 2^3 * 17.
		

Crossrefs

A068140 lists the smallest of two consecutive numbers such that each is divisible by a cube greater than 1. See also A000578, A001235, A176297, A176350.

Programs

  • Mathematica
    f[n_]:=MemberQ[Last/@FactorInteger[n], 3]; Select[Range[8!],f[#]&&f[#+1]&]

Extensions

Edited by Matthew Vandermast, Dec 09 2010

A271444 Smallest of 4 consecutive numbers each divisible by a cube greater than one.

Original entry on oeis.org

22624, 355374, 885624, 912247, 1558248, 1642624, 1728375, 1761991, 2068373, 2485375, 2948373, 2987872, 3072248, 3073623, 3243750, 3571749, 3744872, 3772248, 3916374, 4231248, 4442877, 4503247, 4730373, 4757750, 5301125, 5344623, 5516125, 5812477, 6017247
Offset: 1

Views

Author

Giovanni Resta, Apr 26 2016

Keywords

Examples

			a(1)=22624 is the smallest cubeful number followed by other 3 cubeful numbers. They are divisible by 2^5, 5^3, 3^3, and 11^3, respectively.
		

Crossrefs

Programs

  • Mathematica
    cubQ[n_] := Max[Last /@ FactorInteger[n]] > 2; Select[Range[10^6], cubQ[#] && cubQ[# + 1] && cubQ[# + 2] && cubQ[# + 3] &]
    SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]],IntegerQ[CubeRoot[#]]&],1,0],{n,61*10^5}],{1,1,1,1}][[;;,1]] (* Harvey P. Dale, Jan 05 2025 *)

Extensions

Definition clarified by Harvey P. Dale, Jan 05 2025

A271445 Smallest of 5 consecutive numbers each divisible by a cube.

Original entry on oeis.org

18035622, 100942496, 133799496, 146447622, 156406624, 185966872, 192779375, 215927748, 314066750, 327879871, 363664375, 377956500, 403254124, 412284624, 422615124, 440799246, 458147500, 520659248, 558732248, 562037373, 634965372, 642252750, 664596248
Offset: 1

Views

Author

Giovanni Resta, Apr 26 2016

Keywords

Examples

			a(1) = 18035622 is the smallest cubeful number followed by other 4 cubeful numbers. They are divisible by 3^4, 17^3, 2^3, 5^4, and 7^3, respectively.
		

Crossrefs

Showing 1-10 of 20 results. Next