cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A176297 Numbers with at least one 3 in their prime signature.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 432, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594, 600, 616, 621, 632, 648, 664, 675, 680, 686, 696, 702, 712
Offset: 1

Views

Author

Keywords

Comments

That is, if n = p1^e1 p2^e2 ... pr^er for distinct primes p1, p2,..., pr, then one of the exponents must be 3 for n to be in this sequence.
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^3 + 1/p^4) = 0.0952910730... - Amiram Eldar, Nov 14 2020

Examples

			8=2^3, 24=2^3*3, 27=3^3, 40=2^3*5, ...
		

Crossrefs

Programs

  • Maple
    filter:= proc(x) local F; F:= map(t->t[2],ifactors(x)[2]);has(F,3) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 11 2015
    # alternative:
    isA176297 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) = 3 then
                return true;
            end if;
        end do:
        false ;
    end proc: # R. J. Mathar, Dec 08 2015
  • Mathematica
    f[n_]:=MemberQ[Last/@FactorInteger[n],3]; Select[Range[6!],f]
  • PARI
    isok(n) = vecsearch(vecsort(factor(n)[,2]), 3); \\ Michel Marcus, Jan 11 2015
    
  • Python
    from sympy import factorint
    def ok(n): return 3 in [e for e in factorint(n).values()]
    print(list(filter(ok, range(713)))) # Michael S. Branicky, Aug 24 2021

A176350 First of three consecutive numbers with at least one 3 in their prime signature.

Original entry on oeis.org

6858, 22625, 28375, 40472, 48248, 49624, 58374, 59750, 94471, 102248, 103624, 107702, 112374, 122823, 129623, 133623, 136214, 136375, 153063, 164295, 187623, 190375, 197910, 199624, 210248, 211624, 220374, 221750, 238248, 246616, 260874, 264248, 275750, 280231, 298375, 300806, 312471, 329623, 336824, 346086, 349623, 352375, 356375
Offset: 1

Views

Author

Keywords

Examples

			6858=2*3^3*127,6859=19^3,6860=2^2*5*7^3,..
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=MemberQ[Last/@FactorInteger[n], 3]; Select[Range[9!],f[#]&&f[#+1]&&f[#+2]&]
    SequencePosition[Table[If[MemberQ[FactorInteger[n][[All,2]],3],1,0],{n,360000}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 09 2019 *)

Extensions

Edited by Matthew Vandermast, Dec 09 2010

A109399 Numbers with at least two 3s in their prime signature.

Original entry on oeis.org

216, 1000, 1080, 1512, 2376, 2744, 2808, 3000, 3375, 3672, 4104, 4968, 5400, 6264, 6696, 6750, 7000, 7560, 7992, 8232, 8856, 9000, 9261, 9288, 10152, 10584, 10648, 11000, 11448, 11880, 12744, 13000, 13176, 13500, 13720, 14040, 14472, 15336, 15768, 16632, 17000, 17064, 17576, 17928, 18360, 18522, 19000, 19224, 19656, 20520, 20952, 21000, 21816, 22248, 23000, 23112, 23544, 23625, 24408, 24696, 24840, 25704, 26136, 27000
Offset: 1

Views

Author

Keywords

Comments

In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least two values of i.
Does not include all numbers with at least two unitary prime power divisors that are cubes (see example section).
The asymptotic density of this sequence is 1 - (1 + Sum_{p prime} ((p-1)/(p^4-p+1))) * Product_{p prime} (1-1/p^3+1/p^4) = 0.0024593812036570543518... . - Amiram Eldar, Jul 22 2024

Examples

			216 = 2^3*3^3, 1000 = 2^3*5^3, 1080 = 2^3*3^3*5, ...
On the other hand, 1728 = 2^6*3^3, 8000 = 2^6*5^3 and 21952 = 2^6*7^3 are not in the sequence.
		

Crossrefs

A176359 is a subsequence.

Programs

  • Mathematica
    f[n_]:=Count[Last/@FactorInteger[n],3]>1; Select[Range[8!],f]
  • PARI
    is(n)=#select(e->e==3, factor(n)[,2])>1 \\ Charles R Greathouse IV, Oct 19 2015

Extensions

Edited by Matthew Vandermast, Dec 07 2010

A176359 Numbers with at least three 3s in their prime signature.

Original entry on oeis.org

27000, 74088, 189000, 287496, 297000, 343000, 351000, 370440, 459000, 474552, 513000, 621000, 783000, 814968, 837000, 963144, 999000, 1029000, 1061208, 1107000, 1157625, 1161000, 1259496, 1269000, 1323000, 1331000, 1407672, 1431000, 1437480, 1481544, 1593000, 1647000, 1704024, 1809000, 1852200, 1917000, 1971000, 2012472, 2079000, 2133000, 2148552
Offset: 1

Views

Author

Keywords

Comments

In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least three values of i.
The asymptotic density of this sequence is 1 - (1 + s(1) + s(1)^2/2 - s(2)/2) * Product_{p prime} (1-1/p^3+1/p^4) = 0.000018992895371889141564..., where s(k) = Sum_{p prime} ((p-1)/(p^4-p+1))^k. - Amiram Eldar, Jul 22 2024

Examples

			27000 is a term since 27000 = 2^3 * 3^3 * 5^3.
74088 is a term since 74088 = 2^3 * 5^3 * 7^3.
		

Crossrefs

Subsequence of A109399.

Programs

  • Mathematica
    f[n_]:=Count[Last/@FactorInteger[n],3]>2; Select[Range[10!],f]
  • PARI
    is(n) = #select(x -> x == 3, factor(n)[, 2]) > 2; \\ Amiram Eldar, Jul 22 2024

Extensions

Edited by Matthew Vandermast, Dec 09 2010

A372691 Numbers k such that k and k+1 are both nonsquarefree numbers whose number of divisors is a power of 2 (A175496).

Original entry on oeis.org

135, 296, 343, 375, 999, 1160, 1431, 1592, 1624, 2295, 2375, 2456, 2727, 2943, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4887, 4913, 5048, 5144, 5319, 5480, 6183, 6344, 6375, 6858, 7479, 7624, 7640, 7749, 7911, 8072, 8375, 8936, 9207, 9368, 9624, 9855, 10071, 10232
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

First differs from A176313 at n = 14.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 0, 0, 5, 43, 404, 4086, 40839, 408366, 4083039, 40830831, ... . Apparently, the asymptotic density of this sequence exists and equals 0.004083... .

Examples

			135 is a term since 135 = 3^3 * 5 and 136 = 2^3 * 17 are both nonsquarefree numbers, and the number of divisors of 135 and 136 are both 8 = 2^3.
343 is a term since 343 = 7^3 and 344 = 2^3 * 43 are both nonsquarefree numbers, the number of divisors of 343 is 4 = 2^2, and the number of divisors of 344 is 8 = 2^3.
		

Crossrefs

Subsequence of A013929, A068781, A175496 and A372690.
Cf. A176313.

Programs

  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; q[n_] := q[n] = Module[{e = FactorInteger[n][[;;, 2]]}, Max[e] > 1 && pow2Q[Times @@ (e+1)]]; Select[Range[500], q[#] && q[# + 1] &]
  • PARI
    is(n) = {my(f = factor(n), d = numdiv(f)); n > 1 && vecmax(f[, 2]) > 1 && d >> valuation(d, 2) == 1;}
    lista(kmax) = {my(is1 = is(1), is2); for(k = 2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}
Showing 1-5 of 5 results.