A071254 Duplicate of A063528.
2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
343 is a term as 343 = 7^3 and 344= 2^3 * 43.
isA068140 := proc(n) isA046099(n) and isA046099(n+1) ; end proc: for n from 1 to 4000 do if isA068140(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 08 2015
a = b = 0; Do[b = Max[ Transpose[ FactorInteger[n]] [[2]]]; If[a > 2 && b > 2, Print[n - 1]]; a = b, {n, 2, 5000}] Select[Range[2, 6000], Max[Transpose[FactorInteger[ # ]][[2]]] > 2 && Max[Transpose[FactorInteger[ # + 1]][[2]]] > 2 &] (* Jonathan Vos Post, Sep 18 2007 *) SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]],IntegerQ[Surd[#,3]]&],1,0],{n,3600}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2020 *)
75 is a term since 75 = 3*5^2 and 76 = 2^2*19.
a071318 n = a071318_list !! (n-1) a071318_list = [x | x <- [1..], a212793 x == 1, a008966 x == 0, let y = x+1, a212793 y == 1, a008966 y == 0] -- Reinhard Zumkeller, May 27 2012
With[{s = Select[Range[1350], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ Position[t, 1][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2); \\ Michel Marcus, Aug 02 2017
a(3) = 1375 because 1375 = 11 * 5^3; 1376 = 172 * 2^3; 1377 = 51 * 3^3.
with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0: for a from 0 to 2 do: ii:=0:for m from 1 to 4 while(ii=0) do:p:=ithprime(m)^n:if irem(k+a,p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
a(n)=my(ch,t,best=30^n);forprime(a=2, 29, forprime(b=2, 29, if(a==b,next); ch=chinese(Mod(0,a^n), Mod(-1,b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(tCharles R Greathouse IV, Jan 16 2012
98 is a term since 98 = 2*7^2, 99 = 3^2*11, and 100 = 2^2*5^2.
With[{s = Select[Range[10^4], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2) && (vecmax(factor(n+2)[, 2])==2); \\ Michel Marcus, Aug 02 2017
n = 671346 = 2*3*3*13*19*151; n = 671347 = 17*17*23*101; n = 671348 = 2*2*47*3571; n = 671349 = 3*7*7*4567; n = 671350 = 2*5*5*29*463; n = 671351 = 53*53*239.
k = 844 is a term since 844 = 2^2*211, k+1 = 845 = 5*13^2, k+2 = 846 = 2*3^2*47, and k+4 = 847 = 7*11^2.
With[{s = Select[Range[10^5], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
30923 = 17*17*107; 30924 = 2*2*3*3*859; 30925 = 5*5*1237; 30926 = 2*7*47*47; 30927 = 3*13*13*61.
With[{s = Select[Range[10^6], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
Comments