cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.

Original entry on oeis.org

2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208, 2280241934368767, 2280241934368767, 2280241934368767
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Lesser of the smallest pair of consecutive numbers divisible by an n-th power.
To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1).
One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - Franklin T. Adams-Watters, May 27 2011

Examples

			a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.

Crossrefs

We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1.

Programs

  • Mathematica
    k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
  • PARI
    b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
    a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* Franklin T. Adams-Watters, May 27 2011 */

Extensions

More terms from Jud McCranie, Aug 06 2001

A174113 Smallest number k such that k, k+1, and k+2 are all divisible by an n-th power.

Original entry on oeis.org

48, 1375, 33614, 2590623, 26890623, 2372890624, 70925781248, 2889212890624, 61938212890624, 4497636425781248, 8555081787109375, 2665760081787109375, 98325140081787109375, 198816740081787109374, 11776267480163574218750, 872710687480163574218750, 50783354512519836425781248
Offset: 2

Views

Author

Michel Lagneau, Mar 08 2010

Keywords

Comments

Least of the smallest trio of consecutive numbers divisible by an n-th power.

Examples

			a(3) = 1375 because
  1375 =  11 * 5^3;
  1376 = 172 * 2^3;
  1377 =  51 * 3^3.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1375, p. 135, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0:
    for a from 0 to 2 do: ii:=0:for m from 1 to 4  while(ii=0) do:p:=ithprime(m)^n:if irem(k+a,p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
  • PARI
    a(n)=my(ch,t,best=30^n);forprime(a=2, 29, forprime(b=2, 29, if(a==b,next); ch=chinese(Mod(0,a^n), Mod(-1,b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(tCharles R Greathouse IV, Jan 16 2012

Formula

5^n < a(n) < 30^n. Can the lower bound be improved? - Charles R Greathouse IV, Jan 16 2012

Extensions

a(8)-a(18) from Charles R Greathouse IV, Jan 16 2012

A045330 Lesser of the smallest pair of consecutive numbers divisible by an n-th power, but not both divisible by an (n+1)-st power.

Original entry on oeis.org

2, 8, 135, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 11573190656, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208
Offset: 0

Views

Author

Don Reble, May 25 2002

Keywords

Crossrefs

A358818 a(n) is the least number k such that A046660(k) = A046660(k+1) = n.

Original entry on oeis.org

1, 44, 135, 80, 8991, 29888, 123200, 2316032, 1043199, 24151040, 217713663, 689278976, 11573190656, 76876660736, 311969153024, 2035980763136, 2741258240000, 215189482110975
Offset: 0

Views

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

a(14) <= 314944159743.
a(18) > 10^14.5; a(19) = 275892612890624; a(20) > 10^14.5. - Martin Ehrenstein, Dec 11 2022

Crossrefs

Cf. A046660.
Subsequence of A358817.
Similar sequences: A052215, A059737, A093548, A115186.

Programs

  • Mathematica
    e[n_] := PrimeOmega[n] - PrimeNu[n]; a[n_] := Module[{k = 1}, While[e[k] != n || e[k + 1] != n, k++]; k]; Array[a, 10, 0]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    a(n) = {my(k=1); while(e(k) != n || e(k+1) !=n , k++); k};

Extensions

a(14)-a(16) from Martin Ehrenstein, Dec 04 2022
a(17) from Martin Ehrenstein, Dec 09 2022
Showing 1-4 of 4 results.