cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A258601 a(n) is the index m such that A036967(m) = prime(n)^4.

Original entry on oeis.org

2, 5, 10, 16, 28, 37, 55, 61, 80, 105, 113, 142, 163, 170, 190, 219, 249, 260, 286, 310, 318, 352, 374, 407, 448, 472, 482, 505, 511, 536, 614, 634, 672, 682, 740, 754, 783, 821, 842, 878, 916, 924, 984, 996, 1015, 1032, 1103, 1171, 1201, 1213, 1233, 1270, 1286, 1343, 1379
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A036967(a(n)) = A030514(n) = prime(n)^4;
A036967(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258569(m) = prime(n):
A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A036967(a(n)) = A030514(n) = p^4
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            16
.   2 |  3 |     5 |            81
.   3 |  5 |    10 |           625
.   4 |  7 |    16 |          2401
.   5 | 11 |    28 |         14641
.   6 | 13 |    37 |         28561
.   7 | 17 |    55 |         83521
.   8 | 19 |    61 |        130321
.   9 | 23 |    80 |        279841
.  10 | 29 |   105 |        707281
.  11 | 31 |   113 |        923521
.  12 | 37 |   142 |       1874161
.  13 | 41 |   163 |       2825761
.  14 | 43 |   170 |       3418801
.  15 | 47 |   190 |       4879681
.  16 | 53 |   219 |       7890481
.  17 | 59 |   249 |      12117361
.  18 | 61 |   260 |      13845841
.  19 | 67 |   286 |      20151121
.  20 | 71 |   310 |      25411681
.  21 | 73 |   318 |      28398241
.  22 | 79 |   352 |      38950081
.  23 | 83 |   374 |      47458321
.  24 | 89 |   407 |      62742241
.  25 | 97 |   448 |      88529281
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^4,4) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258601(n):
        c, m = 0, prime(n)**4
        for u in range(1,integer_nthroot(m,7)[0]+1):
            if all(d<=1 for d in factorint(u).values()):
                for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1):
                    if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                        for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                            if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                c += integer_nthroot(z//y**5,4)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A360841 4-full numbers (A036967) sandwiched between twin primes.

Original entry on oeis.org

2592, 139968, 995328, 37340352, 63700992, 99574272, 169869312, 414720000, 1399680000, 4076863488, 10871635968, 17714700000, 22781250000, 25312500000, 35888419872, 51840000000, 82012500000, 98802571392, 135304020000, 136136700000, 170749797552, 174960000000, 196730062848
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			2592 = 2^5 * 3^4 is a term since it is 4-full and 2591 and 2593 are twin primes.
		

Crossrefs

Intersection of A014574 and A036967.
Subsequence of A113839 and A360840.

Programs

  • Mathematica
    Select[6*Range[2*10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 3 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 3;

A176273 Partial sums of A036967.

Original entry on oeis.org

1, 17, 49, 113, 194, 322, 565, 821, 1333, 1958, 2687, 3711, 5007, 7055, 9242, 11643, 14235, 17360, 21248, 25344, 30528, 37089, 44865, 53057, 63057, 73425, 85089, 99730, 115282, 130907, 147291, 164098, 183781, 203781, 224517, 247845, 276406
Offset: 1

Views

Author

Jonathan Vos Post, Apr 14 2010

Keywords

Examples

			a(11) = 1 + 16 + 32 + 64 + 81 + 128 + 243 + 256 + 512 + 625 + 729 = 2687.
		

Crossrefs

Programs

  • Mathematica
    Accumulate @ Select[Range[25000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 3 &] (* Amiram Eldar, Feb 07 2023 *)

Formula

a(n) = Sum_{i=1..n} A036967(i).

A030514 a(n) = prime(n)^4.

Original entry on oeis.org

16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1

Views

Author

Keywords

Comments

Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - Alexandre Wajnberg, Jan 15 2006
Subsequence of A036967. - Reinhard Zumkeller, Feb 05 2008
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - R. J. Mathar, Feb 01 2009
Except for the first three terms, all others are congruent to 1 mod 240. - Robert Israel, Aug 29 2014

Crossrefs

Programs

Formula

a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End)

Extensions

Description corrected by Eric W. Weisstein

A036966 3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000
Offset: 1

Views

Author

Keywords

Comments

Also called powerful_3 numbers.
For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013
a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015

References

  • M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
  • A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
  • E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a036966 n = a036966_list !! (n-1)
    a036966_list = 1 : f (singleton z) [1, z] zs where
       f s q3s p3s'@(p3:p3s)
         | m < p3 = m : f (union (fromList $ map (* m) ps) s') q3s p3s'
         | otherwise = f (union (fromList $ map (* p3) q3s) s) (p3:q3s) p3s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030078_list
    -- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013
    
  • Maple
    isA036966 := proc(n)
        local p ;
        for p in ifactors(n)[2] do
            if op(2,p) < 3 then
                return false;
            end if;
        end do:
        return true ;
    end proc:
    A036966 := proc(n)
        option remember;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA036966(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 01 2013
  • Mathematica
    Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &]
    Join[{1},Select[Range[8000],Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *)
  • PARI
    is(n)=n==1 || vecmin(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    list(lim)=my(v=List(),t); for(a=1,sqrtnint(lim\1,5), for(b=1,sqrtnint(lim\a^5,4), t=a^5*b^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015
    
  • PARI
    list(lim)=my(v=List(),t); forsquarefree(a=1,sqrtnint(lim\1,5), my(a5=a[1]^5); forsquarefree(b=1,sqrtnint(lim\a5,4), if(gcd(a[1],b[1])>1, next); t=a5*b[1]^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Jan 12 2022
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A036966(n):
        def f(x):
            c = n+x
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime}(1 + 1/(p^2*(p-1))) (A065483). - Amiram Eldar, Jun 23 2020
Numbers of the form x^5*y^4*z^3. There is a unique representation with x,y squarefree and coprime. - Charles R Greathouse IV, Jan 12 2022

Extensions

More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002

A046099 Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336
Offset: 1

Views

Author

Keywords

Comments

Also called cubeful numbers, but this term is ambiguous and is best avoided.
Numbers n such that A007427(n) = sum(d|n,mu(d)*mu(n/d)) == 0. - Benoit Cloitre, Apr 17 2002
The convention in the OEIS is that squareful, cubeful, biquadrateful (A046101), ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008. Added by N. J. A. Sloane, Apr 25 2023: This suggestion has not been a success. It is hopeless to try to make a distinction between "cubeful" and "cubefull". To avoid ambiguity, do not use either term, but instead say exactly what you mean.
Also solutions to equation tau_{-2}(n)=0, where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
The asymptotic density of this sequence is 1 - 1/zeta(3) = 0.168092... - Amiram Eldar, Jul 09 2020

Crossrefs

Complement of A004709.
Subsequences: A000578 and A030078.

Programs

  • Haskell
    a046099 n = a046099_list !! (n-1)
    a046099_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA046099 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) >= 3 then
                return true;
            end if;
        end do:
        false ;
    end proc:
    for n from 1 do
        if isA046099(n) then
            printf("%d\n",n) ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
  • Mathematica
    lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>2, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
  • PARI
    is(n)=n>7 && vecmax(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) != n
    print(list(filter(ok, range(1, 337)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A046099(n):
        def f(x): return n+sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A212793(a(n)) = 0. - Reinhard Zumkeller, May 27 2012
Sum_{n>=1} 1/a(n)^s = (zeta(s)*(zeta(3*s)-1))/zeta(3*s). - Amiram Eldar, Dec 27 2022

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008
Edited by N. J. A. Sloane, Jul 27 2009

A046101 Biquadrateful numbers.

Original entry on oeis.org

16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704
Offset: 1

Views

Author

Keywords

Comments

The convention in the OEIS is that squareful, cubeful (A046099), biquadrateful, ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008
Also solutions to equation tau_{-3}(n)=0, where tau_{-3} is A007428. - Enrique Pérez Herrero, Jan 19 2013
Sum_{n>0} 1/a(n)^s = Zeta(s) - Zeta(s)/Zeta(4s). - Enrique Pérez Herrero, Jan 21 2013
A051903(a(n)) > 3. - Reinhard Zumkeller, Sep 03 2015
The asymptotic density of this sequence is 1 - 1/zeta(4) = 1 - 90/Pi^4 = 0.076061... - Amiram Eldar, Jul 09 2020

Crossrefs

Programs

  • Haskell
    a046101 n = a046101_list !! (n-1)
    a046101_list = filter ((> 3) . a051903) [1..]
    -- Reinhard Zumkeller, Sep 03 2015
    
  • Maple
    with(NumberTheory):
    isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1):
    select(isBiquadrateful, [`$`(1..704)]);  # Peter Luschny, Jul 12 2022
  • Mathematica
    lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
    Select[Range[1000],Max[Transpose[FactorInteger[#]][[2]]]>3&] (* Harvey P. Dale, May 25 2014 *)
  • PARI
    is(n)=n>9 && vecmax(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from sympy import mobius, integer_nthroot
    def A046101(n):
        def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

A258602 a(n) is the index m such that A069492(m) = prime(n)^5.

Original entry on oeis.org

2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            32
.   2 |  3 |     5 |           243
.   3 |  5 |    12 |          3125
.   4 |  7 |    20 |         16807
.   5 | 11 |    37 |        161051
.   6 | 13 |    45 |        371293
.   7 | 17 |    68 |       1419857
.   8 | 19 |    82 |       2476099
.   9 | 23 |   106 |       6436343
.  10 | 29 |   142 |      20511149
.  11 | 31 |   154 |      28629151
.  12 | 37 |   196 |      69343957
.  13 | 41 |   219 |     115856201
.  14 | 43 |   234 |     147008443
.  15 | 47 |   260 |     229345007
.  16 | 53 |   305 |     418195493
.  17 | 59 |   342 |     714924299
.  18 | 61 |   360 |     844596301
.  19 | 67 |   407 |    1350125107
.  20 | 71 |   434 |    1804229351
.  21 | 73 |   451 |    2073071593
.  22 | 79 |   496 |    3077056399
.  23 | 83 |   528 |    3939040643
.  24 | 89 |   573 |    5584059449
.  25 | 97 |   635 |    8587340257  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^5,5) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258602(n):
        c, m = 0, prime(n)**5
        for t in range(1,integer_nthroot(m,9)[0]+1):
            if all(d<=1 for d in factorint(t).values()):
                for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1):
                    if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                        for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                            if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                    if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                        c += integer_nthroot(z//y**6,5)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A258603 a(n) is the index m such that A069493(m) = prime(n)^6.

Original entry on oeis.org

2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069493(a(n)) = A030516(n) = prime(n)^6;
A069493(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258571(m) = prime(n):
A258571(a(n)) = A000040(n) and A258571(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069493(a(n)) = A030516(n) = p^6
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            64
.   2 |  3 |     6 |           729
.   3 |  5 |    13 |         15625
.   4 |  7 |    22 |        117649
.   5 | 11 |    45 |       1771561
.   6 | 13 |    58 |       4826809
.   7 | 17 |    87 |      24137569
.   8 | 19 |   102 |      47045881
.   9 | 23 |   135 |     148035889
.  10 | 29 |   181 |     594823321
.  11 | 31 |   199 |     887503681
.  12 | 37 |   252 |    2565726409
.  13 | 41 |   287 |    4750104241
.  14 | 43 |   306 |    6321363049
.  15 | 47 |   342 |   10779215329
.  16 | 53 |   401 |   22164361129
.  17 | 59 |   461 |   42180533641
.  18 | 61 |   479 |   51520374361
.  19 | 67 |   536 |   90458382169
.  20 | 71 |   583 |  128100283921
.  21 | 73 |   602 |  151334226289
.  22 | 79 |   665 |  243087455521
.  23 | 83 |   712 |  326940373369
.  24 | 89 |   776 |  496981290961
.  25 | 97 |   860 |  832972004929  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258603(n):
        c, m = 0, prime(n)**6
        for y1 in range(1,integer_nthroot(m,11)[0]+1):
            if all(d<=1 for d in factorint(y1).values()):
                for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1):
                    if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                        for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                            if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()):
                                for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                    if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()):
                                        for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                            if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()):
                                                c += integer_nthroot(z5//y5**7,6)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A069492 5-full numbers: if a prime p divides k then so does p^5.

Original entry on oeis.org

1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15552, 15625, 16384, 16807, 19683, 23328, 31104, 32768, 46656, 59049, 62208, 65536, 69984, 78125, 93312, 100000, 117649, 124416, 131072, 139968, 161051
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258602(n); a(A258602(n)) = A050997(n) = prime(n)^5. - Reinhard Zumkeller, Jun 06 2015

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069492 n = a069492_list !! (n-1)
    a069492_list = 1 : f (singleton z) [1, z] zs where
       f s q5s p5s'@(p5:p5s)
         | m < p5 = m : f (union (fromList $ map (* m) ps) s') q5s p5s'
         | otherwise = f (union (fromList $ map (* p5) q5s) s) (p5:q5s) p5s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a050997_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • PARI
    for(n=1,250000,if(n*sumdiv(n,d,isprime(d)/d^5)==floor(n*sumdiv(n,d,isprime(d)/d^5)),print1(n,",")))
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    Gen(170000, 5) \\ Andrew Howroyd, Sep 10 2024
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A069492(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for t in range(1,integer_nthroot(x,9)[0]+1):
                if all(d<=1 for d in factorint(t).values()):
                    for u in range(1,integer_nthroot(s:=x//t**9,8)[0]+1):
                        if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                            for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                                if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                    for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                        if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                            c -= integer_nthroot(z//y**6,5)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^4*(p-1))) = 1.0695724994489739263413712783666538355049945684326048537289707764272637... - Amiram Eldar, Jul 09 2020
Showing 1-10 of 23 results. Next