A046118 Smallest member of a sexy prime triple: value of p such that p, p+6 and p+12 are all prime, but p+18 is not (although p-6 might be).
7, 17, 31, 47, 67, 97, 101, 151, 167, 227, 257, 271, 347, 367, 557, 587, 607, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1277, 1291, 1361, 1427, 1447, 1487, 1607, 1657, 1747, 1777, 1867, 1901, 1987, 2131, 2281, 2377, 2411, 2677, 2687, 2707, 2791, 2897, 2957
Offset: 1
Keywords
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
Programs
-
Magma
[p: p in PrimesUpTo(5000) | not IsPrime(p+18) and IsPrime(p+6) and IsPrime(p+12)]; // Vincenzo Librandi, Sep 07 2017
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&!PrimeQ[p+18], AppendTo[lst, p]], {n, 7!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *) Select[Prime[Range[500]],AllTrue[#+{6,12},PrimeQ]&&CompositeQ[#+18]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2019 *)
-
PARI
lista(nn) = forprime(p=3, nn, if (isprime(p+6) && isprime(p+12) && !isprime(p+18), print1(p, ", "));); \\ Michel Marcus, Jan 06 2015
Extensions
Definition edited by Daniel Forgues, Aug 12 2009
More terms from Eric M. Schmidt, Sep 07 2017
Comments