cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046184 Indices of octagonal numbers which are also squares.

Original entry on oeis.org

1, 9, 121, 1681, 23409, 326041, 4541161, 63250209, 880961761, 12270214441, 170902040409, 2380358351281, 33154114877521, 461777249934009, 6431727384198601, 89582406128846401, 1247721958419651009, 17378525011746267721, 242051628206028097081
Offset: 1

Views

Author

Keywords

Comments

The equation a(t)*(3*a(t)-2) = m*m is equivalent to the Pell equation (3*a(t)-1)*(3*a(t)-1) - 3*m*m = 1. - Paul Weisenhorn, May 12 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 16 2011
Also numbers n such that the octagonal number N(n) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also nonnegative integers y in the solutions to 2*x^2 - 6*y^2 + 4*x + 4*y + 2 + 2 = 0, the corresponding values of x being A251963. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Magma
    I:=[1, 9, 121]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 17 2011
    
  • Mathematica
    LinearRecurrence[ {15, -15, 1}, {1, 9, 121}, 17 ] (* Ant King, Nov 16 2011 *)
    CoefficientList[Series[x (1-6x+x^2)/((1-x)(1-14x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 01 2021 *)
  • PARI
    Vec(x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)) + O(x^100)) \\ Colin Barker, Dec 11 2014

Formula

{n: A000567(n) in A000290}.
Nearest integer to (1/6) * (2+sqrt(3))^(2n-1). - Ralf Stephan, Feb 24 2004
a(n) = A045899(n-1) + 1 = A051047(n+1) + 1 = A003697(2n-2). - N. J. A. Sloane, Jun 12 2004
a(n) = A001835(n)^2. - Lekraj Beedassy, Jul 21 2006
From Paul Weisenhorn, May 12 2009: (Start)
With A=(2+sqrt(3))^2=7+4*sqrt(3) the equation x*x-3*m*m=1 has solutions
x(t) + sqrt(3)*m(t) = (2+sqrt(3))*A^t and the recurrences
x(t+2) = 14*x(t+1) - x(t) with = 2, 26, 362, 5042
m(t+2) = 14*m(t+1) - m(t) with = 1, 15, 209, 2911
a(t+2) = 14*a(t+1) - a(t) - 4 with = 1, 9, 121, as above. (End)
From Ant King, Nov 15 2011: (Start)
a(n) = 14*a(n-1) - a(n-2) - 4.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (1/6)*( (2+sqrt(3))^(2n-1) + (2-sqrt(3))^(2n-1) + 2 ).
a(n) = ceiling( (1/6)*(2 + sqrt(3))^(2n-1) ).
a(n) = (1/6)*( (tan(5*Pi/12))^(2n-1) + (tan(Pi/12))^(2n-1) + 2 ).
a(n) = ceiling ( (1/6)*(tan(5*Pi/12))^(2n-1) ).
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = A006253(2n-2). - Andrey Goder, Oct 17 2021