A046310 Numbers that are divisible by exactly 8 primes counting multiplicity.
256, 384, 576, 640, 864, 896, 960, 1296, 1344, 1408, 1440, 1600, 1664, 1944, 2016, 2112, 2160, 2176, 2240, 2400, 2432, 2496, 2916, 2944, 3024, 3136, 3168, 3240, 3264, 3360, 3520, 3600, 3648, 3712, 3744, 3968, 4000, 4160, 4374, 4416, 4536, 4704, 4736
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Reference
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), this sequence (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).
Cf. A046321.
Programs
-
Maple
A046310 := proc(n) option remember; if n = 1 then 2^8 ; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 8 then return a; end if; end do: end if; end proc: seq(A046310(n),n=1..30) ; # R. J. Mathar, Dec 21 2018
-
Mathematica
Select[Range[1600], Plus @@ Last /@ FactorInteger[ # ] == 8 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *) Select[Range[5000],PrimeOmega[#]==8&] (* Harvey P. Dale, Apr 19 2011 *)
-
PARI
is(n)=bigomega(n)==8 \\ Charles R Greathouse IV, Mar 21 2013
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A046310(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Product p_i^e_i with Sum e_i = 8.
a(n) ~ 5040n log n / (log log n)^7. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(8,n). - R. J. Mathar, Jan 30 2019
Comments