cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046312 Numbers that are divisible by exactly 9 primes with multiplicity.

Original entry on oeis.org

512, 768, 1152, 1280, 1728, 1792, 1920, 2592, 2688, 2816, 2880, 3200, 3328, 3888, 4032, 4224, 4320, 4352, 4480, 4800, 4864, 4992, 5832, 5888, 6048, 6272, 6336, 6480, 6528, 6720, 7040, 7200, 7296, 7424, 7488, 7936, 8000, 8320, 8748, 8832, 9072, 9408
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 9-almost primes. Products of exactly 9 primes (not necessarily distinct). - Jonathan Vos Post, Dec 11 2004

Crossrefs

Cf. A046311, A120050 (number of 9-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), this sequence (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[2200], Plus @@ Last /@ FactorInteger[ # ] == 9 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[10000],PrimeOmega[#]==9&] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    is(n)=bigomega(n)==9 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046312(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,9)))
        return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 9.
a(n) ~ 40320n log n / (log log n)^8. - Charles R Greathouse IV, May 06 2013