cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046315 Odd semiprimes: odd numbers divisible by exactly 2 primes (counted with multiplicity).

Original entry on oeis.org

9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 289
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

In general, the prime factors, p, of a(n) are given by: p = sqrt(a(n) + (k/2)^2) +- (k/2) where k is the positive difference of the prime factors. Equivalently, p = (1/2)( sqrt(4a(n) + k^2) +- k ). - Wesley Ivan Hurt, Jun 28 2013

Examples

			From _K. D. Bajpai_, Jul 05 2014: (Start)
15 is a term because it is an odd number and 15 = 3 * 5, which is semiprime.
39 is a term because it is an odd number and 39 = 3 * 13, which is semiprime. (End)
		

Crossrefs

Odd members of A001358.
A046388 is a subsequence.
Cf. A085770 (number of odd semiprimes < 10^n). - Robert G. Wilson v, Aug 25 2011

Programs

  • Haskell
    a046315 n = a046315_list !! (n-1)
    a046315_list = filter odd a001358_list  -- Reinhard Zumkeller, Jan 02 2014
    
  • Maple
    A046315 := proc(n) option remember; local r;
       if n = 1 then RETURN(9) fi;
       for r from procname(n - 1) + 2 by 2 do
          if numtheory[bigomega](r) = 2 then
             RETURN(r)
          end if
       end do
    end proc:
    seq(A046315(n),n=1..56); # Peter Luschny, Feb 15 2011
  • Mathematica
    Reap[Do[If[Total[FactorInteger[n]][[2]] == 2, Sow[n]], {n, 1, 400, 2}]][[2,1]] (* Zak Seidov *)
    fQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2; Select[2 Range@ 150 - 1, fQ] (* Robert G. Wilson v, Feb 15 2011 *)
    Select[Range[5,301,2],PrimeOmega[#]==2&] (* Harvey P. Dale, May 22 2015 *)
  • PARI
    list(lim)=my(u=primes(primepi(lim\3)),v=List(),t); for(i=2,#u, for(j=i,#u, t=u[i]*u[j];if(t>lim,break); listput(v,t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A046315(n):
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024

Formula

Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)) - P(s)/2^s, for s>1, where P is the prime zeta function. - Amiram Eldar, Nov 21 2020