A046315 Odd semiprimes: odd numbers divisible by exactly 2 primes (counted with multiplicity).
9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 289
Offset: 1
Keywords
Examples
From _K. D. Bajpai_, Jul 05 2014: (Start) 15 is a term because it is an odd number and 15 = 3 * 5, which is semiprime. 39 is a term because it is an odd number and 39 = 3 * 13, which is semiprime. (End)
Links
- Zak Seidov and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1956 terms from Zak Seidov)
Crossrefs
Odd members of A001358.
A046388 is a subsequence.
Cf. A085770 (number of odd semiprimes < 10^n). - Robert G. Wilson v, Aug 25 2011
Programs
-
Haskell
a046315 n = a046315_list !! (n-1) a046315_list = filter odd a001358_list -- Reinhard Zumkeller, Jan 02 2014
-
Maple
A046315 := proc(n) option remember; local r; if n = 1 then RETURN(9) fi; for r from procname(n - 1) + 2 by 2 do if numtheory[bigomega](r) = 2 then RETURN(r) end if end do end proc: seq(A046315(n),n=1..56); # Peter Luschny, Feb 15 2011
-
Mathematica
Reap[Do[If[Total[FactorInteger[n]][[2]] == 2, Sow[n]], {n, 1, 400, 2}]][[2,1]] (* Zak Seidov *) fQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2; Select[2 Range@ 150 - 1, fQ] (* Robert G. Wilson v, Feb 15 2011 *) Select[Range[5,301,2],PrimeOmega[#]==2&] (* Harvey P. Dale, May 22 2015 *)
-
PARI
list(lim)=my(u=primes(primepi(lim\3)),v=List(),t); for(i=2,#u, for(j=i,#u, t=u[i]*u[j];if(t>lim,break); listput(v,t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
-
Python
from math import isqrt from sympy import primepi, primerange def A046315(n): def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 17 2024
Formula
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)) - P(s)/2^s, for s>1, where P is the prime zeta function. - Amiram Eldar, Nov 21 2020
Comments