A046395
Palindromes that are the product of 5 distinct primes.
Original entry on oeis.org
6006, 8778, 20202, 28182, 41514, 43134, 50505, 68586, 87978, 111111, 141141, 168861, 202202, 204402, 209902, 246642, 249942, 262262, 266662, 303303, 323323, 393393, 399993, 438834, 454454, 505505, 507705, 515515, 516615, 519915, 534435, 535535, 543345
Offset: 1
505505 = 5 * 7 * 11 * 13 * 101.
Cf.
A046331 (palindromes with 5 prime factors counted with multiplicity),
A373465 (counting only distinct prime divisors).
Corrected at the suggestion of Sean A. Irvine by
Harvey P. Dale, Apr 09 2021
A373465
Palindromes with exactly 5 distinct prime divisors.
Original entry on oeis.org
6006, 8778, 20202, 28182, 40404, 41514, 43134, 50505, 60606, 63336, 66066, 68586, 80808, 83538, 86268, 87978, 111111, 141141, 168861, 171171, 202202, 204402, 209902, 210012, 212212, 219912, 225522, 231132, 232232, 239932, 246642, 249942, 252252, 258852, 262262, 266662, 272272
Offset: 1
a(1) = 6006 = 2 * 3 * 7 * 11 * 13 is a palindrome (A002113) with 5 prime divisors.
a(5) = 40404 = 2^2 * 3 * 7 * 13 * 37 also is a palindrome with 5 prime divisors, although the divisor 2 occurs twice as a factor in the factorization.
Cf.
A046331 (same but counting prime factors with multiplicity),
A046395 (same but squarefree),
A373466 (same with omega = 6),
A373467 (with omega = 7).
-
Select[Range[300000],PalindromeQ[#]&&Length[FactorInteger[#]]==5&] (* James C. McMahon, Jun 08 2024 *)
Select[Range[300000],PalindromeQ[#]&&PrimeNu[#]==5&] (* Harvey P. Dale, Sep 01 2024 *)
-
A373465_upto(N, start=1, num_fact=5)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}
A046379
Palindromes with exactly 5 palindromic prime factors (counted with multiplicity).
Original entry on oeis.org
252, 616, 5445, 5775, 8888, 48884, 268862, 448844, 526625, 577775, 1478741, 2468642, 3498943, 5304035, 13577531, 17377371, 22666622, 29244292, 33999933, 124666421, 151202151, 1144664411, 36466266463, 334826628433, 534874478435, 592723327295, 597593395795
Offset: 1
The palindrome 151202151 is a term since it has 5 factors 3^2 101 181 919, all palindromic.
A348050
Palindromes setting a new record of their number of prime divisors A001222.
Original entry on oeis.org
1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1
-
m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
-
from sympy import factorint
from itertools import product
def palsthru(maxdigits):
midrange = [[""], [str(i) for i in range(10)]]
for digits in range(1, maxdigits+1):
for p in product("0123456789", repeat=digits//2):
left = "".join(p)
if len(left) and left[0] == '0': continue
for middle in midrange[digits%2]:
yield int(left+middle+left[::-1])
def afind(maxdigits):
record = -1
for p in palsthru(maxdigits):
f = factorint(p, multiple=True)
if p > 0 and len(f) > record:
record = len(f)
print(p, end=", ")
afind(10) # Michael S. Branicky, Oct 25 2021
Showing 1-4 of 4 results.
Comments