cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046395 Palindromes that are the product of 5 distinct primes.

Original entry on oeis.org

6006, 8778, 20202, 28182, 41514, 43134, 50505, 68586, 87978, 111111, 141141, 168861, 202202, 204402, 209902, 246642, 249942, 262262, 266662, 303303, 323323, 393393, 399993, 438834, 454454, 505505, 507705, 515515, 516615, 519915, 534435, 535535, 543345
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

No exponent of the distinct prime factors can be greater than one, i.e., no prime powers are permitted. - Harvey P. Dale, Apr 09 2021 at the suggestion of Sean A. Irvine
See A373465 for the similar sequence where only distinct prime divisors are counted, but may occur to higher powers. - M. F. Hasler, Jun 06 2024

Examples

			505505 = 5 * 7 * 11 * 13 * 101.
		

Crossrefs

Cf. A002113 (palindromes), A051270 (omega(.) = 5).
Cf. A046331 (palindromes with 5 prime factors counted with multiplicity), A373465 (counting only distinct prime divisors).

Programs

  • Mathematica
    Select[Range[550000],PalindromeQ[#]&&PrimeNu[#]==PrimeOmega[#]==5&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 09 2021 *)

Formula

Intersection of A002113 and A046387.

Extensions

Corrected at the suggestion of Sean A. Irvine by Harvey P. Dale, Apr 09 2021
Name edited to avoid confusion by M. F. Hasler, Jun 06 2024

A373465 Palindromes with exactly 5 distinct prime divisors.

Original entry on oeis.org

6006, 8778, 20202, 28182, 40404, 41514, 43134, 50505, 60606, 63336, 66066, 68586, 80808, 83538, 86268, 87978, 111111, 141141, 168861, 171171, 202202, 204402, 209902, 210012, 212212, 219912, 225522, 231132, 232232, 239932, 246642, 249942, 252252, 258852, 262262, 266662, 272272
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Examples

			a(1) = 6006 = 2 * 3 * 7 * 11 * 13 is a palindrome (A002113) with 5 prime divisors.
a(5) = 40404 = 2^2 * 3 * 7 * 13 * 37 also is a palindrome with 5 prime divisors, although the divisor 2 occurs twice as a factor in the factorization.
		

Crossrefs

Cf. A002113 (palindromes), A051270 (omega(.) = 5).
Cf. A046331 (same but counting prime factors with multiplicity), A046395 (same but squarefree), A373466 (same with omega = 6), A373467 (with omega = 7).

Programs

  • Mathematica
    Select[Range[300000],PalindromeQ[#]&&Length[FactorInteger[#]]==5&] (* James C. McMahon, Jun 08 2024 *)
    Select[Range[300000],PalindromeQ[#]&&PrimeNu[#]==5&] (* Harvey P. Dale, Sep 01 2024 *)
  • PARI
    A373465_upto(N, start=1, num_fact=5)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A051270.

A046379 Palindromes with exactly 5 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

252, 616, 5445, 5775, 8888, 48884, 268862, 448844, 526625, 577775, 1478741, 2468642, 3498943, 5304035, 13577531, 17377371, 22666622, 29244292, 33999933, 124666421, 151202151, 1144664411, 36466266463, 334826628433, 534874478435, 592723327295, 597593395795
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 151202151 is a term since it has 5 factors 3^2 101 181 919, all palindromic.
		

Crossrefs

Cf. A046331.

Extensions

More terms from Lars Blomberg, Nov 06 2015

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-4 of 4 results.