cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046397 Palindromes which are the product of exactly 7 distinct primes.

Original entry on oeis.org

22444422, 24266242, 26588562, 35888853, 36399363, 43777734, 47199174, 51066015, 53588535, 53888835, 55233255, 59911995, 60066006, 62588526, 62700726, 62888826, 81699618, 87788778, 89433498, 122434221, 202040202
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The original name "Palindromes with exactly 7 distinct prime factors" did not exclude that one or more of the factors occurred to a higher power: this is sequence A373467. As the listed data show, terms of this sequence must be squarefree. - M. F. Hasler, Jun 06 2024

Examples

			The first two palindromes with 7 distinct prime factors are 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 and 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103, but these are excluded since one of the prime factors occurs to a higher power.
a(1) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101, which is squarefree, is therefore the first term of this sequence.
		

Crossrefs

Cf. A046333 (similar but prime factors counted with multiplicity), A373467 (similar but counting just the distinct prime divisors).
Cf. A002113 (palindromes), A123321 (products of 7 distinct primes), A176655 (numbers with omega = 7 distinct prime divisors).

Programs

  • Maple
    digrev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F) = 7 and map(t -> t[2],F)=[1$7]
    end proc:
    Res:= NULL:
    count:= 0:
    for d from 2  while count < 100 do
      if d::even then
        m:= d/2;
        for n from 10^(m-1) to 10^m-1 while count < 100 do
          v:= n*10^m+digrev(n);
          if filter(v) then count:= count+1; Res:= Res, v; fi;
        od;
      else
        m:= (d-1)/2;
        for n from 10^(m-1) to 10^m-1 while count < 100 do
          for y from 0 to 9 while count < 100 do
             v:= n*10^(m+1)+y*10^m+digrev(n);
             if filter(v) then count:= count+1; Res:= Res, v; fi;
        od od
      fi
    od:
    Res; # Robert Israel, Jan 20 2020
  • PARI
    A046397_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); is_A002113(start)&& start--; while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024

A373467 Palindromes with exactly 7 (distinct) prime divisors.

Original entry on oeis.org

20522502, 21033012, 22444422, 23555532, 24266242, 25777752, 26588562, 35888853, 36399363, 41555514, 41855814, 42066024, 43477434, 43777734, 44888844, 45999954, 47199174, 51066015, 51666615, 52777725, 53588535, 53888835, 55233255, 59911995, 60066006, 60366306, 61777716, 62588526, 62700726
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Examples

			Obviously all terms must be palindromic; let us consider the prime factorization:
a(1) = 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 has exactly 7 distinct prime divisors, although the factor 3 appears twice in the factorization. (Without the second factor 3 the number would not be palindromic.)
a(2) = 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103 has exactly 7 distinct prime divisors, although the factor 2 appears twice in the factorization. (Without the second factor 2 the number would not be palindromic.)
a(3) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101 is the product of 7 distinct primes (cf. A123321), hence the first squarefree term of this sequence.
		

Crossrefs

Cf. A046333 (same with bigomega = 7: counting prime factors with multiplicity), A046397 (same but only squarefree terms), A373465 (same with omega = 5), A046396 (same with omega = 6).
Cf. A002113 (palindromes), A176655 (omega(.) = 7), A123321 (products of 7 distinct primes).

Programs

  • PARI
    A373467_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A176655.

A046381 Palindromes with exactly 7 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

82728, 279972, 657756, 29077092, 85688658, 89288298, 561363165, 579828975, 582636285, 819828918, 2209559022, 5154334515, 5637337365, 6824774286, 8904664098, 19585758591, 42372027324, 62663836626, 70151815107, 167985589761, 4650120210564, 6552226222556
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 7051034301507 is a term since it has 7 factors 3^2 7 101^2 313 35053, all palindromic.
		

Crossrefs

Cf. A046333.

Extensions

More terms from Lars Blomberg, Nov 06 2015

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-4 of 4 results.