cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046382 Palindromes with exactly 8 prime factors (counted with multiplicity) each of which is a palindrome.

Original entry on oeis.org

2112, 25152, 67776, 2171712, 2190912, 2384832, 2559552, 6142416, 26011062, 213909312, 215080512, 215656512, 217787712, 232727232, 234474432, 251737152, 255999552, 270939072, 291888192, 616535616, 616727616, 618666816, 618858816, 635545536, 637676736, 652808256
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 217787712 is a term since it has 8 factors 2^6 3 1134311, all palindromic.
		

Crossrefs

Cf. A046334.

Extensions

Corrected and edited by D. S. McNeil, Dec 10 2010
More terms from Lars Blomberg, Nov 06 2015

A046398 Palindromes with exactly 8 distinct prime factors.

Original entry on oeis.org

244868442, 1346776431, 2012112102, 2050550502, 2222442222, 2274994722, 2402442042, 2435775342, 2601661062, 2615775162, 2806886082, 4116996114, 4163773614, 4188998814, 4305335034, 4501551054, 4515665154, 4542992454
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A046334.

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-3 of 3 results.