cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046316 Numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.

Original entry on oeis.org

27, 45, 63, 75, 99, 105, 117, 125, 147, 153, 165, 171, 175, 195, 207, 231, 245, 255, 261, 273, 275, 279, 285, 325, 333, 343, 345, 357, 363, 369, 385, 387, 399, 423, 425, 429, 435, 455, 465, 475, 477, 483, 507, 531, 539, 549, 555, 561, 575, 595, 603, 605
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

A369979 sorted into ascending order.
Subsequence of A014612 and of A046340.
Cf. A255646 (final digits), A369054, A369058 (characteristic function), A369252 [= A003415(a(n))].

Programs

  • Haskell
    a046316 n = a046316_list !! (n-1)
    a046316_list = filter ((== 3) . a001222) [1, 3 ..]
    -- Reinhard Zumkeller, May 05 2015
    
  • PARI
    list(lim)=my(v=List(),pq); forprime(p=3,lim\9, forprime(q=3,min(lim\3\p,p), pq=p*q; forprime(r=3,lim\pq, listput(v, pq*r)))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A046316(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b+1 for a,k in enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

Extensions

Definition clarified by N. J. A. Sloane, Dec 19 2017

A046339 Composite numbers with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 32, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 128, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			a(1)=8 as 8=2*2*2, that is 8 is a composite integer and having 3 (an odd number) prime factors.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{p = Plus @@ Last /@ FactorInteger@n}, OddQ[p] && p > 1]; Select[ Range@200, fQ[ # ] &] (* Robert G. Wilson v, Jan 04 2006 *)
    Select[Range[200],CompositeQ[#]&&OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, Oct 14 2019 *)
  • PARI
    is(n)=!isprime(n) && bigomega(n)%2 \\ Charles R Greathouse IV, Sep 17 2015

A046341 Composite palindromes with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

8, 44, 66, 99, 171, 212, 222, 242, 252, 272, 282, 292, 333, 343, 363, 404, 434, 464, 474, 494, 555, 575, 595, 606, 616, 646, 656, 696, 747, 777, 828, 848, 888, 909, 969, 1001, 1221, 1331, 1551, 1771, 2222, 2552, 2882, 3333, 3553, 4004, 4224, 4334, 4554
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Extensions

Title corrected by Sean A. Irvine, Apr 08 2021
Showing 1-3 of 3 results.