cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A369246 Irregular triangle read by rows, where row n lists in ascending order all numbers k in A046316 for which k' = the n-th Euclid number, where k' stands for the arithmetic derivative, and the Euclid numbers are given by A006862. Rows of length zero are simply omitted, i.e., when A369245(n) = 0.

Original entry on oeis.org

399, 4809, 5763, 63021, 76449, 1301673, 19204051701, 421177029231, 908999759928891, 39248269334566041, 39248273246018313, 68437232802099093891, 4903038892893242229501
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Comments

All terms are multiples of 3 because for all n >= 2, A006862(n) = 1 + A002110(n) == +1 (mod 3), see A369252.
Although the first thirteen terms appear in the ascending order, this might not be true for all the later terms, if they exist.

Examples

			Rows 1..3 have no terms.
Row 4 has one term: 399 = 3 * 7 * 19, whose arithmetic derivative (see A003415) 399' is 211 = 1 + prime(4)# [= A006862(4)].
Row 5 has two terms: 4809 = 3 * 7 * 229 and 5763 = 3 * 17 * 113, with 4809' = 5763' = 2311 = 1 + prime(5)#.
Row 6 has two terms: 63021 = 3 * 7 * 3001 and 76449 = 3 * 17 * 1499, with 63021' = 76449' = 30031 = 1 + prime(6)#.
Row 7 has one term: 1301673 = 3 * 17 * 25523, whose arithmetic derivative is 510511 = 1 + prime(7)#.
Rows 8 and 9 have no terms.
Row 10 has one term: 19204051701 = 3 * 281 * 22780607, whose arithmetic derivative is 6469693231 = 1 + prime(10)#.
Row 11 has one term: 421177029231 = 3 * 7 * 20056049011, whose arithmetic derivative is 200560490131 = 1 + prime(11)#.
Row 12 has no terms.
Row 13 has one term: 908999759928891 = 3 * 727 * 416781182911, whose arithmetic derivative is 304250263527211 = 1 + prime(13)#.
Row 14 has two terms: 39248269334566041 = 3 * 8071457 * 1620866771, and 39248273246018313 = 3 * 11056387 * 1183276033, which both have arithmetic derivative 13082761331670031 = 1 + prime(14)#.
Row 15 has no terms.
Row 16 has one term: 68437232802099093891 = 3 * 7 * 3258915847719004471, whose arithmetic derivative is 32589158477190044731 = 1 + prime(16)#.
Row 17 has at least this term: 4903038892893242229501 = 3 * 17 * 96138017507710631951, whose arithmetic derivative is 1922760350154212639071 = 1 + prime(17)#.
		

Crossrefs

Subsequence of A008585 and of A046316.
Cf. A003415, A002110, A006862, A369054, A369245 (counts of solutions, length of row n), A369252.
Cf. also A366890, A369240 for similar tables.

A014612 Numbers that are the product of exactly three (not necessarily distinct) primes.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244
Offset: 1

Views

Author

Keywords

Comments

Sometimes called "triprimes" or "3-almost primes".
See also A001358 for product of two primes (sometimes called semiprimes).
If you graph a(n)/n for n up to 10000 (and probably quite a bit higher), it appears to be converging to something near 3.9. In fact the limit is infinite. - Franklin T. Adams-Watters, Sep 20 2006
Meng shows that for any sufficiently large odd integer n, the equation n = a + b + c has solutions where each of a, b, c is 3-almost prime. The number of such solutions is (log log n)^6/(16 (log n)^3)*n^2*s(n)*(1 + O(1/log log n)), where s(n) = Sum_{q >= 1} Sum_{a = 1..q, (a, q) = 1} exp(i*2*Pi*n*a/q)*mu(n)/phi(n)^3 > 1/2. - Jonathan Vos Post, Sep 16 2005, corrected & rewritten by M. F. Hasler, Apr 24 2019
Also, a(n) are the numbers such that exactly half of their divisors are composite. For the numbers in which exactly half of the divisors are prime, see A167171. - Ivan Neretin, Jan 12 2016

Examples

			From _Gus Wiseman_, Nov 04 2020: (Start)
Also Heinz numbers of integer partitions into three parts, counted by A001399(n-3) = A069905(n) with ordered version A000217, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence of terms together with their prime indices begins:
      8: {1,1,1}     70: {1,3,4}     130: {1,3,6}
     12: {1,1,2}     75: {2,3,3}     138: {1,2,9}
     18: {1,2,2}     76: {1,1,8}     147: {2,4,4}
     20: {1,1,3}     78: {1,2,6}     148: {1,1,12}
     27: {2,2,2}     92: {1,1,9}     153: {2,2,7}
     28: {1,1,4}     98: {1,4,4}     154: {1,4,5}
     30: {1,2,3}     99: {2,2,5}     164: {1,1,13}
     42: {1,2,4}    102: {1,2,7}     165: {2,3,5}
     44: {1,1,5}    105: {2,3,4}     170: {1,3,7}
     45: {2,2,3}    110: {1,3,5}     171: {2,2,8}
     50: {1,3,3}    114: {1,2,8}     172: {1,1,14}
     52: {1,1,6}    116: {1,1,10}    174: {1,2,10}
     63: {2,2,4}    117: {2,2,6}     175: {3,3,4}
     66: {1,2,5}    124: {1,1,11}    182: {1,4,6}
     68: {1,1,7}    125: {3,3,3}     186: {1,2,11}
(End)
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974). See p. 211.

Crossrefs

Cf. A000040, A001358 (biprimes), A014613 (quadruprimes), A033942, A086062, A098238, A123072, A123073, A101605 (characteristic function).
Cf. A109251 (number of 3-almost primes <= 10^n).
Subsequence of A145784. - Reinhard Zumkeller, Oct 19 2008
Cf. A007304 is the squarefree case.
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), this sequence (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Cf. A253721 (final digits).
A014311 is a different ranking of ordered triples, with strict case A337453.
A046316 is the restriction to odds, with strict case A307534.
A075818 is the restriction to evens, with strict case A075819.
A285508 is the nonsquarefree case.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.

Programs

  • Haskell
    a014612 n = a014612_list !! (n-1)
    a014612_list = filter ((== 3) . a001222) [1..] -- Reinhard Zumkeller, Apr 02 2012
    
  • Maple
    with(numtheory); A014612:=n->`if`(bigomega(n)=3, n, NULL); seq(A014612(n), n=1..250) # Wesley Ivan Hurt, Feb 05 2014
  • Mathematica
    threeAlmostPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 3; Select[ Range@244, threeAlmostPrimeQ[ # ] &] (* Robert G. Wilson v, Jan 04 2006 *)
    NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; NestList[NextkAlmostPrime[#, 3] &, 2^3, 56] (* Robert G. Wilson v, Jan 27 2013 *)
    Select[Range[244], PrimeOmega[#] == 3 &] (* Jayanta Basu, Jul 01 2013 *)
  • PARI
    isA014612(n)=bigomega(n)==3 \\ Charles R Greathouse IV, May 07 2011
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,lim\4, forprime(q=2,min(lim\(2*p),p), t=p*q; forprime(r=2,min(lim\t,q),listput(v,t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return sum(f[p] for p in f) == 3
    print(list(filter(ok, range(245)))) # Michael S. Branicky, Aug 12 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014612(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024
  • Scala
    def primeFactors(number: Int, list: List[Int] = List())
                                                          : List[Int] = {
      for (n <- 2 to number if (number % n == 0)) {
        return primeFactors(number / n, list :+ n)
      }
      list
    }
    (1 to 250).filter(primeFactors().size == 3) // _Alonso del Arte, Nov 04 2020, based on algorithm by Victor Farcic (vfarcic)
    

Formula

Product p_i^e_i with Sum e_i = 3.
a(n) ~ 2n log n / (log log n)^2 as n -> infinity [Landau, p. 211].
Tau(a(n)) = 2 * (omega(a(n)) + 1) = 2*A083399(a(n)), where tau = A000005 and omega = A001221. - Wesley Ivan Hurt, Jun 28 2013
a(n) = A078840(3,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998

A007304 Sphenic numbers: products of 3 distinct primes.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430, 434, 435, 438
Offset: 1

Views

Author

Keywords

Comments

Note the distinctions between this and "n has exactly three prime factors" (A014612) or "n has exactly three distinct prime factors." (A033992). The word "sphenic" also means "shaped like a wedge" [American Heritage Dictionary] as in dentation with "sphenic molars." - Jonathan Vos Post, Sep 11 2005
Also the volume of a sphenic brick. A sphenic brick is a rectangular parallelepiped whose sides are components of a sphenic number, namely whose sides are three distinct primes. Example: The distinct prime triple (3,5,7) produces a 3x5x7 unit brick which has volume 105 cubic units. 3-D analog of 2-D A037074 Product of twin primes, per Cino Hilliard's comment. Compare with 3-D A107768 Golden 3-almost primes = Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. - Jonathan Vos Post, Jan 08 2007
Sum(n>=1, 1/a(n)^s) = (1/6)*(P(s)^3 - P(3*s) - 3*(P(s)*P(2*s)-P(3*s))), where P is prime zeta function. - Enrique Pérez Herrero, Jun 28 2012
Also numbers n with A001222(n)=3 and A001221(n)=3. - Enrique Pérez Herrero, Jun 28 2012
n = 265550 is the smallest n with a(n) (=1279789) < A006881(n) (=1279793). - Peter Dolland, Apr 11 2020

Examples

			From _Gus Wiseman_, Nov 05 2020: (Start)
Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins:
     30: {1,2,3}     182: {1,4,6}     286: {1,5,6}
     42: {1,2,4}     186: {1,2,11}    290: {1,3,10}
     66: {1,2,5}     190: {1,3,8}     310: {1,3,11}
     70: {1,3,4}     195: {2,3,6}     318: {1,2,16}
     78: {1,2,6}     222: {1,2,12}    322: {1,4,9}
    102: {1,2,7}     230: {1,3,9}     345: {2,3,9}
    105: {2,3,4}     231: {2,4,5}     354: {1,2,17}
    110: {1,3,5}     238: {1,4,7}     357: {2,4,7}
    114: {1,2,8}     246: {1,2,13}    366: {1,2,18}
    130: {1,3,6}     255: {2,3,7}     370: {1,3,12}
    138: {1,2,9}     258: {1,2,14}    374: {1,5,7}
    154: {1,4,5}     266: {1,4,8}     385: {3,4,5}
    165: {2,3,5}     273: {2,4,6}     399: {2,4,8}
    170: {1,3,7}     282: {1,2,15}    402: {1,2,19}
    174: {1,2,10}    285: {2,3,8}     406: {1,4,10}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • "Sphenic", The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company, 2000.

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A162143 (a(n)^2).
For the following, NNS means "not necessarily strict".
A014612 is the NNS version.
A046389 is the restriction to odds (NNS: A046316).
A075819 is the restriction to evens (NNS: A075818).
A239656 gives first differences.
A285508 lists terms of A014612 that are not squarefree.
A307534 is the case where all prime indices are odd (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338557 is the case where all prime indices are even (NNS: A338556).
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers.
A008289 counts strict partitions by sum and length.
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).

Programs

  • Haskell
    a007304 n = a007304_list !! (n-1)
    a007304_list = filter f [1..] where
    f u = p < q && q < w && a010051 w == 1 where
    p = a020639 u; v = div u p; q = a020639 v; w = div v q
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Maple
    with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n),n=1..450); # Emeric Deutsch
    A007304 := proc(n)
        option remember;
        local a;
        if n =1 then
            30;
        else
            for a from procname(n-1)+1 do
                if bigomega(a)=3 and nops(factorset(a))=3 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Dec 06 2016
    is_a := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end:
    A007304List := upto -> select(is_a, [seq(1..upto)]):  # Peter Luschny, Apr 14 2025
  • Mathematica
    Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]]
    Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *)
    With[{upto=500},Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *)
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
  • PARI
    for(n=1,1e4,if(bigomega(n)==3 && omega(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim)^(1/3),forprime(q=p+1,sqrt(lim\p),t=p*q;forprime(r=q+1,lim\t,listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); Set(v) \\ Charles R Greathouse IV, Jan 21 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A007304(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024
    
  • SageMath
    def is_a(n):
        P = prime_divisors(n)
        return len(P) == 3 and prod(P) == n
    print([n for n in range(1, 439) if is_a(n)]) # Peter Luschny, Apr 14 2025

Formula

A008683(a(n)) = -1.
A000005(a(n)) = 8. - R. J. Mathar, Aug 14 2009
A002033(a(n)-1) = 13. - Juri-Stepan Gerasimov, Oct 07 2009, R. J. Mathar, Oct 14 2009
A178254(a(n)) = 36. - Reinhard Zumkeller, May 24 2010
A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013
a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Robert G. Wilson v, Jan 04 2006
Comment concerning number of divisors corrected by R. J. Mathar, Aug 14 2009

A046389 Products of exactly three distinct odd primes.

Original entry on oeis.org

105, 165, 195, 231, 255, 273, 285, 345, 357, 385, 399, 429, 435, 455, 465, 483, 555, 561, 595, 609, 615, 627, 645, 651, 663, 665, 705, 715, 741, 759, 777, 795, 805, 861, 885, 897, 903, 915, 935, 957, 969, 987, 1001, 1005, 1015, 1023, 1045, 1065, 1085
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The old name was "Odd numbers with exactly 3 distinct prime factors", which is slightly ambiguous, since it might be interpreted to include 315 = 3^2*5*7. Cf. A278569. - N. J. A. Sloane, Nov 27 2016

Crossrefs

Programs

  • Mathematica
    f[n_] := OddQ[n] && Last/@FactorInteger[n]=={1,1,1}; lst={}; Do[If[f[n], AppendTo[lst,n]], {n, 2000}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
  • PARI
    list(lim)=my(v=List(), t); forprime(p=3, lim^(1/3), forprime(q=p+1, sqrt(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 26 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A046389(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Extensions

Name clarified by N. J. A. Sloane, Nov 27 2016

A211540 Number of ordered triples (w,x,y) with all terms in {1..n} and 2w = 3x + 4y.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Also the number of partitions of n+1 into three parts, where each part > 1. - Peter Woodward, May 25 2015
a(n) is also equal to the number of partitions of n+4 into three distinct parts, where each part > 1. - Giovanni Resta, May 26 2015
Number of different distributions of n+1 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Dec 31 2015
After the first three terms, partial sums of A008615. - Robert Israel, Dec 31 2015
For n >= 2, also the number of partitions of n - 2 into 3 parts. The Heinz numbers of these partitions are given by A014612. - Gus Wiseman, Oct 11 2020

Examples

			a(5) = a(6) = 1 with only one ordered triple (5,2,1). - _Michael Somos_, Feb 02 2015
a(11) = 5 Number of different distributions of 11 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015
a(1) = a(2) = a(3) = a(4) = a(5) = 0, since with fewer than 6 identical balls there is no such distribution with 3 boxes that holds for 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015
G.f.: x^5 + x^6 + 2*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + 7*x^11 + 8*x^12 + ...
From _Gus Wiseman_, Oct 11 2020: (Start)
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three parts > 1 [Woodward] are the following (A = 10, B = 11, C = 12). The ordered version is A000217(n - 4) and the Heinz numbers are A046316.
  222  322  332  333  433  443  444  544  554  555  655
            422  432  442  533  543  553  644  654  664
                 522  532  542  552  643  653  663  754
                      622  632  633  652  662  744  763
                           722  642  733  743  753  772
                                732  742  752  762  844
                                822  832  833  843  853
                                     922  842  852  862
                                          932  933  943
                                          A22  942  952
                                               A32  A33
                                               B22  A42
                                                    B32
                                                    C22
The a(5) = 1 through a(15) = 14 partitions of n + 4 into three distinct parts > 1 [Resta] are the following (A = 10, B = 11, C = 12, D = 13, E = 14). The ordered version is A211540*6 and the Heinz numbers are A046389.
  432  532  542  543  643  653  654  754  764  765  865
            632  642  652  743  753  763  854  864  874
                 732  742  752  762  853  863  873  964
                      832  842  843  862  872  954  973
                           932  852  943  953  963  982
                                942  952  962  972  A54
                                A32  A42  A43  A53  A63
                                     B32  A52  A62  A72
                                          B42  B43  B53
                                          C32  B52  B62
                                               C42  C43
                                               D32  C52
                                                    D42
                                                    E32
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three distinct parts [Uslu and Becenen] are the following (A = 10, B = 11, C = 12, D = 13). The ordered version is A211540(n)*6 and the Heinz numbers are A007304.
  321  421  431  432  532  542  543  643  653  654  754
            521  531  541  632  642  652  743  753  763
                 621  631  641  651  742  752  762  853
                      721  731  732  751  761  843  862
                           821  741  832  842  852  871
                                831  841  851  861  943
                                921  931  932  942  952
                                     A21  941  951  961
                                          A31  A32  A42
                                          B21  A41  A51
                                               B31  B32
                                               C21  B41
                                                    C31
                                                    D21
(End)
		

Crossrefs

All of the following pertain to 3-part strict partitions.
- A000009 counts these partitions of any length, with non-strict version A000041.
- A007304 gives the Heinz numbers, with non-strict version A014612.
- A101271 counts the relatively prime case, with non-strict version A023023.
- A220377 counts the pairwise coprime case, with non-strict version A307719.
- A337605 counts the pairwise non-coprime case, with non-strict version A337599.

Programs

  • Magma
    I:=[0,0,0,0,0,1]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6),seq(a(i)=0,i=0..4),a(5)=1},a(n),remember):
    seq(f(i),i=0..100); # Robert Israel, Dec 31 2015
  • Mathematica
    t[n_] := t[n] = Flatten[Table[-2 w + 3 x + 4 y, {w, n}, {x, n}, {y, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 80}]  (* A211540 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[Length[Select[IntegerPartitions[n+1,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = round( (n-2)^2 / 12 )}; / * Michael Somos, Feb 02 2015 */
    
  • PARI
    concat(vector(5), Vec(x^5/(1-x-x^2+x^4+x^5-x^6) + O(x^100))) \\ Altug Alkan, Jan 10 2016

Formula

a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = A069905(n-2) = A001399(n-5) for n >= 5. - Alois P. Heinz, Nov 03 2012
a(n) = 3*k^2-6*k+3 (for n = 6*k-3), 3*k^2-5*k+2 (for n = 6*k-2), 3*k^2-4*k+1 (for n = 6*k-1), 3*k^2-3*k+1 (for n = 6*k), 3*k^2-2*k (for n = 6*k+1), 3*k^2-k (for n = 6*k+2). - Ece Uslu, Esin Becenen, Dec 31 2015
a(n) = A004526(n-2) + a(n-2) for n > 2. - Ece Uslu, Esin Becenen, Dec 31 2015
G.f.: x^5/(1 - x - x^2 + x^4 + x^5 - x^6). - Robert Israel, Dec 31 2015
a(n) = Sum_{k=1..floor(n/3)} floor((n-k)/2)-k. - Wesley Ivan Hurt, Apr 27 2019
From Gus Wiseman, Oct 11 2020: (Start)
a(n+2) = A069905(n) = A001399(n-3) counts 3-part partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part strict partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part partitions with no 1's.
a(n-4) = A069905(n-6) = A001399(n-9) counts 3-part strict partitions with no 1's.
A000217(n-2) counts 3-part compositions.
a(n-1)*6 = A069905(n-3)*6 = A001399(n-6)*6 counts 3-part strict compositions.
A000217(n-5) counts 3-part compositions with no 1's.
a(n-4)*6 = A069905(n-6)*6 = A001399(n-9)*6 counts 3-part strict compositions with no 1's.
(End)

A369054 Number of representations of n as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Comments

Number of solutions to n = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes (not all necessarily distinct, A046316).
See the conjecture in A369055.

Examples

			a(27) = 1 as 27 can be expressed in exactly one way in the form (p*q + p*r + q*r), with p, q, r all being 3 in this case, as 27 = (3*3 + 3*3 + 3*3).
a(311) = 5 as 311 = (3*5 + 3*37 + 5*37) = (3*7 + 3*29 + 7*29) = (3*13 + 3*17 + 13*17) = (5*7 + 5*23 + 7*23) = (7*11 + 7*13 + 11*13). Expressed in the terms of arithmetic derivatives, of the A099302(311) = 8 antiderivatives of 311 [366, 430, 494, 555, 609, 663, 805, 1001], only the last five are products of three odd primes: 555 = 3*5*37, 609 = 3*7*29, 663 = 3*13*17, 805 = 5*7*23, 1001 = 7 * 11 * 13.
		

Crossrefs

Cf. A369055 [quadrisection, a(4n-1)], and its trisections A369460 [= a((12*n)-9)], A369461 [= a((12*n)-5)], A369462 [= a((12*n)-1)].
Cf. A369251 (positions of terms > 0), A369464 (positions of 0's).
Cf. A369063 (positions of records), A369064 (values of records).
Cf. A369241 [= a(2^n - 1)], A369242 [= a(n!-1)], A369245 [= a(A006862(n))], A369247 [= a(3*A057588(n))].

Programs

  • PARI
    \\ Use this for building up a list up to a certain n. We iterate over weakly increasing triplets of odd primes:
    A369054list(up_to) = { my(v = [3,3,3], ip = #v, d, u = vector(up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > up_to, ip--, ip = #v; u[d]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])); };
    v369054 = A369054list(100001);
    A369054(n) = if(!n,n,v369054[n]);
    
  • PARI
    \\ Use this for computing the value of arbitrary n. We iterate over weakly increasing pairs of odd primes:
    A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])));

Formula

a(n) = Sum_{i=1..A002620(n)} A369058(i)*[A003415(i)==n], where [ ] is the Iverson bracket.
For n >= 2, a(n) <= A099302(n).

A369055 Number of representations of 4n-1 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 0, 0, 0, 3, 0, 1, 0, 2, 1, 2, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 5, 2, 0, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 2, 0, 2, 1, 0, 2, 0, 3, 1, 0, 0, 4, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Comments

Number of solutions to 4n-1 = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes, A046316.
The number of 0's in range [1..10^n], for n=1..7 are: 8, 46, 288, 2348, 21330, 206355, 2079925, etc.
Goldbach's conjecture can be expressed by claiming that each even number > 4 is an arithmetic derivative of an odd semiprime, as (p*q)' = p+q, where p and q are odd primes. One way to extend Goldbach's conjecture to three primes involves applying the arithmetic derivative to all possible products of three odd primes (A046316) as: (p*q*r)' = (p*q) + (p*r) + (q*r), and asking, "Onto which subset of natural numbers does this map surjectively?" Clearly, the above formula can only produce numbers of the form 4m+3, and furthermore, an analysis at A369252 shows that the trisections of this sequence have quite different expected values, being on average the highest in the trisection A369462, which gives the number of representations for the numbers of the form 12m+11. This motivates a new kind of Goldbach-3 conjecture: "All numbers of the form 12*m-1, with m large enough, have at least one representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r." Furthermore, empirical data for sequence A369463 suggests that "large enough" in this case might well be 4224080, as 1+(12*4224079) = 50688949 = A369463(285), with the next term of A369463 so far unknown. Similar conjectures can be envisaged for the arithmetic derivatives of products of four or more primes. - Antti Karttunen, Jan 25 2024

Examples

			a(7) = 1 because 4*7 - 1 = 27, which can be represented as a sum of the form (p*q) + (p*r) + (q*r), with all three primes p, q and r = 3.
a(19) = 2 because 4*19 - 1 = 75, which can be represented as a sum of the form (p*q) + (p*r) + (q*r) in two ways, with p=3, q=3 and r=11, or with p = q = r = 5.
a(9999995) = 0 because (4*9999995)-1 = 39999979, which cannot be expressed as a sum (p*q) + (p*r) + (q*r) for any three odd primes p, q and r, whether distinct or not.
		

Crossrefs

Cf. A369460, A369461, A369462 (trisections), A369450, A369451, A369452 (and their partial sums).
Cf. also A351029, A369239.

Programs

  • PARI
    \\ We iterate over weakly increasing triplets of odd primes:
    A369055list(up_to) = { my(v = [3,3,3], ip = #v, d, u = vector(up_to), lim = -1+(4*up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > lim, ip--, ip = #v; u[(d+1)/4]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])); };
    v369055 = A369055list(100001);
    A369055(n) = v369055[n];

Formula

a(n) = A369054(4*n-1).
a(n) = Sum_{i=1..A002620(4*n-1)} A369058(i)*[A003415(i)==4*n-1], where [ ] is the Iverson bracket.

A369252 Arithmetic derivative applied to the numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.

Original entry on oeis.org

27, 39, 51, 55, 75, 71, 87, 75, 91, 111, 103, 123, 95, 119, 147, 131, 119, 151, 183, 151, 135, 195, 167, 155, 231, 147, 199, 191, 187, 255, 167, 267, 211, 291, 195, 215, 247, 191, 263, 215, 327, 251, 247, 363, 203, 375, 311, 271, 255, 239, 411, 231, 311, 343, 299, 231, 435, 359, 331, 447, 311, 263, 391, 483, 263
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Comments

The table showing the possible modulo 3 combinations for p, q, r and the sum ((p*q) + (p*r) + (q*r)):
| p | q | r | sum ((p*q) + (p*r) + (q*r)) (mod 3)
--+------+------+------+----------------------------------------
| 0 | 0 | 0 | 0, p=q=r=3, sum is 27.
--+------+------+------+----------------------------------------
| 0 | 0 | +/-1 | 0, p=q=3, r > 3.
--+------+------+------+----------------------------------------
| 0 | +1 | +1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | -1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | +1 | -1
--+------+------+------+----------------------------------------
| 0 | +1 | -1 | -1
--+------+------+------+----------------------------------------
| +1 | +1 | +1 | 0
--+------+------+------+----------------------------------------
| -1 | -1 | -1 | 0
--+------+------+------+----------------------------------------
| -1 | +1 | +1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
| +1 | -1 | -1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
Notably a(n) is a multiple of 3 only when A046316(n) is either a multiple of 9, or all primes p, q and r are either == +1 (mod 3) or all are == -1 (mod 3), and the case a(n) == +1 (mod 3) is only possible when A046316(n) is a multiple of 3, but not of 9, and furthermore, it is required that r == q (mod 3). See how these combinations affects sequences like A369241, A369245, A369450, A369451, A369452.
For n=1..9 the number of terms of the form 3k, 3k+1 and 3k+2 in range [1..10^n-1] are:
6, 2, 1,
39, 22, 38,
291, 209, 499,
2527, 1884, 5588,
23527, 17020, 59452,
227297, 156240, 616462,
2232681, 1453030, 6314288,
22119496, 13661893, 64218610,
220098425, 129624002, 650277572.
It seems that 3k+2 terms are slowly gaining at the expense of 3k+1 terms when n grows, while the density of the multiples of 3 might converge towards a limit.

Crossrefs

Cf. A369251 (same sequence sorted into ascending order, with duplicates removed).
Cf. A369464 (numbers that do not occur in this sequence).
Cf. also the trisections of A369055: A369460, A369461, A369462 and their partial sums A369450, A369451, A369452, also A369241, A369245.
Only terms of A004767 occur here.

Formula

a(n) = A003415(A046316(n)).

A145784 Numbers with property that their number of prime factors counted with multiplicity is a multiple of 3.

Original entry on oeis.org

1, 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 64, 66, 68, 70, 75, 76, 78, 92, 96, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 144, 147, 148, 153, 154, 160, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 216, 222
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 19 2008

Keywords

Comments

A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 02 2024

Crossrefs

Cf. A001222, A010872, A373975 (characteristic function).
Cf. also A028260, A214195, A297845.

Programs

  • Haskell
    a145784 n = a145784_list !! (n-1)
    a145784_list = filter ((== 0) . a010872 . a001222) [1..]
    -- Reinhard Zumkeller, May 26 2012
    
  • Mathematica
    Join[{1}, Select[Range[2,230], Mod[Total[Transpose[FactorInteger[#]][[2]]], 3] == 0 &]] (* T. D. Noe, May 21 2012 *)
  • PARI
    isok(k) = !(bigomega(k) % 3); \\ Amiram Eldar, May 16 2025

Formula

A010872(A001222(a(n))) = 0.

A369239 Number of integers whose arithmetic derivative is larger than 1 and equal to the n-th partial sum of primorial numbers.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 27, 0, 319, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 18 2024

Keywords

Comments

Note how there are generally less solutions for even n than for odd n. This is explained by the fact that A143293(2n) == 1 (mod 4) and A143293(2n+1) == 3 (mod 4) and the arithmetic derivative A003415 of a product of any three odd primes (A046316) is always of the form 4k+3, therefore the solution set counted by a(2n) does not have any solutions from A046316 that contribute the majority of the solutions counted by a(2n+1). See also A369055.
a(13) >= 1 as there are solutions like 5744093403180469, 12538540924097819, etc., probably thousands or even more in total.
a(14) >= 1 [see examples].

Examples

			a(12) = 1 as there is a unique solution k such that k' = A143293(12) = 7628001653829, that k being 318745032938881 = 71*173*307*1259*67139. It's also the first solution with more than four prime factors.
a(14) >= 1, because as A143293(14)-2 = 13394639596851069-2 = 13394639596851067 is a prime, we have at least one solution, with A003415(2*13394639596851067) = A003415(26789279193702134) = 2+13394639596851067 = A143293(14).
For more examples, see A369240.
		

Crossrefs

Programs

  • PARI
    \\ See the attached program.
Showing 1-10 of 22 results. Next